Carbon footprints of incineration, pyrolysis, and gasification for sewage sludge treatment

IF 11.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
{"title":"Carbon footprints of incineration, pyrolysis, and gasification for sewage sludge treatment","authors":"","doi":"10.1016/j.resconrec.2024.107939","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal technologies have gained increasing attention in sludge management. This study applied life cycle assessment to assess the impacts to climate change of ten technological configurations (TCs) treating sludge with incineration, gasification, and pyrolysis. We used distributions of process parameters for quantifying the associated uncertainties and considered different energy exchanges. In a 55 %-fossil energy system, the TCs with various thermal processes showed impacts to climate change in a wide range of −2000 to 2000 kg CO<sub>2</sub> eq/t total solid. A probabilistic comparison indicated that with a 10 %-fossil energy system, TCs with gasification and pyrolysis showed <em>a</em> &gt; 95 % probability of performing better than TCs with incineration. Energy consumption and dewatering parameters contributed significantly to the uncertainty due to their large variation and sensitivity. This study emphasized the potential of optimizing key parameters and provided evidence from a climate change perspective for better technological selection and development in sludge management.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924005329","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal technologies have gained increasing attention in sludge management. This study applied life cycle assessment to assess the impacts to climate change of ten technological configurations (TCs) treating sludge with incineration, gasification, and pyrolysis. We used distributions of process parameters for quantifying the associated uncertainties and considered different energy exchanges. In a 55 %-fossil energy system, the TCs with various thermal processes showed impacts to climate change in a wide range of −2000 to 2000 kg CO2 eq/t total solid. A probabilistic comparison indicated that with a 10 %-fossil energy system, TCs with gasification and pyrolysis showed a > 95 % probability of performing better than TCs with incineration. Energy consumption and dewatering parameters contributed significantly to the uncertainty due to their large variation and sensitivity. This study emphasized the potential of optimizing key parameters and provided evidence from a climate change perspective for better technological selection and development in sludge management.
焚化、热解和气化处理污水污泥的碳足迹
热技术在污泥管理中越来越受到关注。本研究采用生命周期评估方法,评估了用焚烧、气化和热解处理污泥的十种技术配置(TC)对气候变化的影响。我们利用工艺参数的分布来量化相关的不确定性,并考虑了不同的能量交换。在化石能源占 55% 的系统中,采用不同热处理工艺的技术方案对气候变化的影响范围为-2000 至 2000 千克二氧化碳当量/吨总固体。概率比较表明,在 10% 的化石能源系统中,采用气化和热解工艺的 TCs 比采用焚烧工艺的 TCs 有 95% 的概率表现更好。由于能耗和脱水参数变化大、敏感性高,因此在很大程度上造成了不确定性。这项研究强调了优化关键参数的潜力,并从气候变化的角度为更好地选择和开发污泥管理技术提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Resources Conservation and Recycling
Resources Conservation and Recycling 环境科学-工程:环境
CiteScore
22.90
自引率
6.10%
发文量
625
审稿时长
23 days
期刊介绍: The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns. Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信