Arthur Goodwin , Christian Schröder , Emily Bonsall , Russell J. Garwood , Romain Tartèse
{"title":"Abiotic origin of organics in the martian regolith","authors":"Arthur Goodwin , Christian Schröder , Emily Bonsall , Russell J. Garwood , Romain Tartèse","doi":"10.1016/j.epsl.2024.119055","DOIUrl":null,"url":null,"abstract":"<div><div>The martian meteorite Northwest Africa (NWA) 11220 and paired stones (notably NWA 7034) are the only group of meteorites that sample a clastic near-surface lithology from Mars. The stones have been recognized as an impact-reworked lithology subjected to an impact-induced hydrothermal system — comparable to the postulated history of Jezero Crater, currently being explored by the NASA Perseverance rover. By applying Mössbauer spectroscopy in combination with several in situ analytical techniques including Raman spectroscopy, FTIR spectroscopy, and NanoSIMS, we show that aliphatic carbon compounds dominate the inventory of insoluble indigenous carbon compounds within NWA 11220. Disordered carbon — present in ∼5 μm heterogeneous masses — is preferentially found within porosity where it adjoins the mineral surface of titano-magnetite. This relationship suggests catalytic surfaces have enabled Fischer–Tropsch (FT) synthesis of hydrocarbons. Our in situ micron-scale analytical study indicates that such methods can help determine the origin of organic material that exists in the near-surface martian regolith. Such multimodal approaches will be a key methodology for searching for traces of past life in future samples returned from Mars.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119055"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24004874","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The martian meteorite Northwest Africa (NWA) 11220 and paired stones (notably NWA 7034) are the only group of meteorites that sample a clastic near-surface lithology from Mars. The stones have been recognized as an impact-reworked lithology subjected to an impact-induced hydrothermal system — comparable to the postulated history of Jezero Crater, currently being explored by the NASA Perseverance rover. By applying Mössbauer spectroscopy in combination with several in situ analytical techniques including Raman spectroscopy, FTIR spectroscopy, and NanoSIMS, we show that aliphatic carbon compounds dominate the inventory of insoluble indigenous carbon compounds within NWA 11220. Disordered carbon — present in ∼5 μm heterogeneous masses — is preferentially found within porosity where it adjoins the mineral surface of titano-magnetite. This relationship suggests catalytic surfaces have enabled Fischer–Tropsch (FT) synthesis of hydrocarbons. Our in situ micron-scale analytical study indicates that such methods can help determine the origin of organic material that exists in the near-surface martian regolith. Such multimodal approaches will be a key methodology for searching for traces of past life in future samples returned from Mars.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.