{"title":"Montmorillonite modification and chromate adsorption mechanisms of organo-montmorillonite: A multiscale study","authors":"Xueying Liu , Wei Yang , Renpeng Chen","doi":"10.1016/j.clay.2024.107592","DOIUrl":null,"url":null,"abstract":"<div><div>Cetyltrimethylammonium bromide modified montmorillonite (CTMAB-Mt) demonstrates effective removal of hexavalent chromium. It is crucial to understand the mechanisms by which changes in the microstructure of montmorillonite affect its adsorption capacity. This study combines molecular dynamic simulation, microscopic detection, and column/batch tests to reconstruct the microstructure of CTMAB-Mt at various loading levels and to investigate its chromate adsorption behavior. The results indicate that the primary modification mechanism of CTMAB-Mt involves ligand binding between the head group N(CH<sub>3</sub>)<sub>3</sub> of the organic modifier and the surface oxygen of the siloxane layer in the clay. Compared to capture by CTMA<sup>+</sup>, CrO<sub>4</sub><sup>2−</sup> prefers to form aqueous complexes, resulting in limited enhancement of CTMAB-Mt's adsorption capacity at low loading levels (<1.00 CEC). Notably, Molecular dynamics simulations reveal that the adsorption capacity of 1.00 CTMAB-Mt is exceptionally high, reaching 7.87 mg/L. This finding is consistent with results from column and batch tests, providing a novel method for calculating the heavy metal adsorption capacity. The enhanced adsorption capacity is primarily due to electrostatic attraction and van der Waals forces between the head groups of CTMA<sup>+</sup> and CrO<sub>4</sub><sup>2−</sup>. A comprehensive understanding of chromate adsorption by modified montmorillonite is essential for developing modified clay and preventing chromium pollution.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"261 ","pages":"Article 107592"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724003405","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cetyltrimethylammonium bromide modified montmorillonite (CTMAB-Mt) demonstrates effective removal of hexavalent chromium. It is crucial to understand the mechanisms by which changes in the microstructure of montmorillonite affect its adsorption capacity. This study combines molecular dynamic simulation, microscopic detection, and column/batch tests to reconstruct the microstructure of CTMAB-Mt at various loading levels and to investigate its chromate adsorption behavior. The results indicate that the primary modification mechanism of CTMAB-Mt involves ligand binding between the head group N(CH3)3 of the organic modifier and the surface oxygen of the siloxane layer in the clay. Compared to capture by CTMA+, CrO42− prefers to form aqueous complexes, resulting in limited enhancement of CTMAB-Mt's adsorption capacity at low loading levels (<1.00 CEC). Notably, Molecular dynamics simulations reveal that the adsorption capacity of 1.00 CTMAB-Mt is exceptionally high, reaching 7.87 mg/L. This finding is consistent with results from column and batch tests, providing a novel method for calculating the heavy metal adsorption capacity. The enhanced adsorption capacity is primarily due to electrostatic attraction and van der Waals forces between the head groups of CTMA+ and CrO42−. A comprehensive understanding of chromate adsorption by modified montmorillonite is essential for developing modified clay and preventing chromium pollution.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...