Emerging class of SrZrS3 chalcogenide perovskite solar cells: Conductive MOFs as HTLs - A game changer?

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Evangeline Linda, Aruna-Devi Rasu Chettiar, Latha Marasamy
{"title":"Emerging class of SrZrS3 chalcogenide perovskite solar cells: Conductive MOFs as HTLs - A game changer?","authors":"Evangeline Linda,&nbsp;Aruna-Devi Rasu Chettiar,&nbsp;Latha Marasamy","doi":"10.1016/j.solmat.2024.113204","DOIUrl":null,"url":null,"abstract":"<div><div>The emerging SrZrS<sub>3</sub> chalcogenide perovskite has been suggested as a potential alternative to lead halide perovskites, offering unique optoelectronic properties while addressing concerns such as lead toxicity and instability. Our research explored its potential, demonstrating the use of conductive metal-organic frameworks (c-MOFs) Cu-MOF ({[Cu<sub>2</sub>(6-mercapto nicotinate)]·NH<sub>4</sub>}n), NTU-9, Fe<sub>2</sub>(DSBDC), Sr-MOF ({[Sr(ntca)(H<sub>2</sub>O)<sub>2</sub>]·H<sub>2</sub>O}n), Mn<sub>2</sub>(DSBDC), and Cu<sub>3</sub>(HHTP)<sub>2</sub> as promising substitutes for traditional HTLs via SCAPS-1D. By systematically optimizing the absorber and HTL properties, maximum PCEs of 30.60 %, 29.78 %, 28.29 %, 28.44 %, 28.80 %, and 28.62 % were accomplished for solar cell devices based on the aforementioned MOFs, respectively. Comparative analysis of initial and optimized solar cells using energy band diagrams, Nyquist plots, and quantum efficiency revealed that optimized devices consistently raised quasi-Fermi levels, significantly enhanced conductivity, and boosted solar cell performance. Additionally, the high recombination resistance of 1.4 × 10<sup>7</sup> Ω cm<sup>2</sup>, improved spectral response of 35 % in the NIR region, and heightened built-in potential (∼0.99 V) resulted in the highest efficiency of 30.60 % for Cu-MOF solar cells. This research highlights the promising potential of novel SrZrS<sub>3</sub> absorbers and the utilization of c-MOFs as HTLs in solar cells, positioning them as a game changer in the PV field.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113204"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005166","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging SrZrS3 chalcogenide perovskite has been suggested as a potential alternative to lead halide perovskites, offering unique optoelectronic properties while addressing concerns such as lead toxicity and instability. Our research explored its potential, demonstrating the use of conductive metal-organic frameworks (c-MOFs) Cu-MOF ({[Cu2(6-mercapto nicotinate)]·NH4}n), NTU-9, Fe2(DSBDC), Sr-MOF ({[Sr(ntca)(H2O)2]·H2O}n), Mn2(DSBDC), and Cu3(HHTP)2 as promising substitutes for traditional HTLs via SCAPS-1D. By systematically optimizing the absorber and HTL properties, maximum PCEs of 30.60 %, 29.78 %, 28.29 %, 28.44 %, 28.80 %, and 28.62 % were accomplished for solar cell devices based on the aforementioned MOFs, respectively. Comparative analysis of initial and optimized solar cells using energy band diagrams, Nyquist plots, and quantum efficiency revealed that optimized devices consistently raised quasi-Fermi levels, significantly enhanced conductivity, and boosted solar cell performance. Additionally, the high recombination resistance of 1.4 × 107 Ω cm2, improved spectral response of 35 % in the NIR region, and heightened built-in potential (∼0.99 V) resulted in the highest efficiency of 30.60 % for Cu-MOF solar cells. This research highlights the promising potential of novel SrZrS3 absorbers and the utilization of c-MOFs as HTLs in solar cells, positioning them as a game changer in the PV field.

Abstract Image

新出现的 SrZrS3 卤化物包晶太阳能电池:作为 HTL 的导电 MOFs - 改变游戏规则?
新兴的 SrZrS3 卤化物包晶被认为是卤化铅包晶的潜在替代品,它具有独特的光电特性,同时还能解决铅毒性和不稳定性等问题。我们的研究探索了其潜力,通过 SCAPS-1D,证明了导电金属有机框架(c-MOFs)Cu-MOF({[Cu2(6-巯基烟酸)]-NH4}n)、NTU-9、Fe2(DSBDC)、Sr-MOF({[Sr(ntca)(H2O)2]-H2O}n)、Mn2(DSBDC)和 Cu3(HHTP)2 可作为传统 HTLs 的理想替代品。通过系统优化吸收剂和 HTL 特性,基于上述 MOFs 的太阳能电池装置的最大 PCE 分别达到 30.60%、29.78%、28.29%、28.44%、28.80% 和 28.62%。利用能带图、奈奎斯特图和量子效率对初始太阳能电池和优化太阳能电池进行的比较分析表明,优化器件不断提高准费米级,显著增强了导电性,提高了太阳能电池的性能。此外,Cu-MOF 太阳能电池的重组电阻高达 1.4 × 107 Ω cm2,在近红外区域的光谱响应提高了 35%,内置电位也有所提高(0.99 V),因此效率最高,达到 30.60%。这项研究凸显了新型 SrZrS3 吸收剂的巨大潜力,以及 c-MOFs 作为 HTLs 在太阳能电池中的应用,使其成为光伏领域的游戏规则改变者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信