Clumped isotopes constrain thermogenic and secondary microbial methane origins in coal bed methane

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Xinchu Wang , Biying Chen , Hui Nai , Cong-Qiang Liu , Guannan Dong , Naizhong Zhang , Si-Liang Li , Jonathan Gropp , Jennifer McIntosh , Rob M. Ellam , John M. Eiler , Sheng Xu
{"title":"Clumped isotopes constrain thermogenic and secondary microbial methane origins in coal bed methane","authors":"Xinchu Wang ,&nbsp;Biying Chen ,&nbsp;Hui Nai ,&nbsp;Cong-Qiang Liu ,&nbsp;Guannan Dong ,&nbsp;Naizhong Zhang ,&nbsp;Si-Liang Li ,&nbsp;Jonathan Gropp ,&nbsp;Jennifer McIntosh ,&nbsp;Rob M. Ellam ,&nbsp;John M. Eiler ,&nbsp;Sheng Xu","doi":"10.1016/j.epsl.2024.119023","DOIUrl":null,"url":null,"abstract":"<div><div>Methane is an economic energy resource and potent greenhouse gas. Distinguishing secondary microbial methane from thermogenic gas is important for natural gas exploration and consideration of subsurface microbial activity in the global carbon cycle, but remains challenging. To understand controls on methane origins in natural gas systems, we investigated the methane clumped isotopologue distributions in the Qinshui Basin high-thermal maturity coal bed methane (CBM) reservoir. Here, near-equilibrium clumped isotopologues distribution (Δ<sup>13</sup>CH<sub>3</sub>D and Δ<sup>12</sup>CH<sub>2</sub>D<sub>2</sub>) inferred a temperature interval of 21.6–252.3 °C. The high-temperature thermodynamic equilibrium most likely represents original thermogenic CBM characteristics during coalification. The low-temperature equilibrium clumped isotopologue distributions suggest microbial alteration to CH<sub>4</sub> isotopic bond ordering by increased enzymatically catalyzed isotopic exchange. The independent constraints from clumped isotopes, integrated with other geochemical and genomic evidence, confirm notable secondary microbial methane from biodegradation in the highly mature reservoir. Thus, methane clumped isotopes can be used as unequivocal tracers to distinguish secondary microbial methane from thermogenic gases and hence provide the ability to incorporate them separately into global methane budgets.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119023"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24004552","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Methane is an economic energy resource and potent greenhouse gas. Distinguishing secondary microbial methane from thermogenic gas is important for natural gas exploration and consideration of subsurface microbial activity in the global carbon cycle, but remains challenging. To understand controls on methane origins in natural gas systems, we investigated the methane clumped isotopologue distributions in the Qinshui Basin high-thermal maturity coal bed methane (CBM) reservoir. Here, near-equilibrium clumped isotopologues distribution (Δ13CH3D and Δ12CH2D2) inferred a temperature interval of 21.6–252.3 °C. The high-temperature thermodynamic equilibrium most likely represents original thermogenic CBM characteristics during coalification. The low-temperature equilibrium clumped isotopologue distributions suggest microbial alteration to CH4 isotopic bond ordering by increased enzymatically catalyzed isotopic exchange. The independent constraints from clumped isotopes, integrated with other geochemical and genomic evidence, confirm notable secondary microbial methane from biodegradation in the highly mature reservoir. Thus, methane clumped isotopes can be used as unequivocal tracers to distinguish secondary microbial methane from thermogenic gases and hence provide the ability to incorporate them separately into global methane budgets.
成团同位素制约煤层甲烷中的热生和次生微生物甲烷起源
甲烷是一种经济能源,也是一种强效温室气体。区分次生微生物甲烷和热成因气体对于天然气勘探和考虑全球碳循环中的地下微生物活动非常重要,但仍然具有挑战性。为了了解天然气系统中甲烷起源的控制因素,我们研究了沁水盆地高热成因煤层气(CBM)储层中的甲烷团块同位素分布。在这里,近平衡块状同位素分布(Δ13CH3D 和 Δ12CH2D2)推断出温度区间为 21.6-252.3 ℃。高温热力学平衡最有可能代表煤化过程中煤层气的原始热成岩特征。低温平衡的团块同位素分布表明,微生物通过增加酶催化的同位素交换,改变了 CH4 同位素键的排序。来自团块同位素的独立约束与其他地球化学和基因组证据相结合,证实了高度成熟储层中生物降解产生的显著次生微生物甲烷。因此,甲烷团块同位素可以作为明确的示踪剂来区分次生微生物甲烷和热源气体,从而提供将它们分别纳入全球甲烷预算的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信