{"title":"Local smooth solutions to the Euler-Poisson equations for semiconductor in vacuum","authors":"La-Su Mai, Chun Wang","doi":"10.1016/j.jmaa.2024.128915","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the initial-boundary value problem to the Euler-Poisson equations for semiconductors, which involves the vacuum for the electronic density, a challenging case because of its degeneracy and singularity. The main issue is to investigate the local well-posedness of smooth solutions to the isentropic system with an adiabatic exponent <span><math><mi>γ</mi><mo>></mo><mn>1</mn></math></span>, a degenerate hyperbolic-elliptic system on the free boundary. By setting the system to the Lagrangian coordinates, we reduce it to the quasi-linear wave equation coupling the Poisson equations, where the initial degeneracy can be explicitly expressed by the function <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>γ</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> of the initial density <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, which equals to the distance function near boundaries. By applying the Hardy inequality and weighted Sobolev spaces depending on the distance function, we can overcome the degeneracy and singularity of the system caused by the vacuum, and we technically establish some crucial <em>priori</em> estimates and then prove the existence and uniqueness of the local smooth solution. This is the first result on the smooth solution to the Euler-Poisson equations for semiconductors in vacuum.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 1","pages":"Article 128915"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008370","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the initial-boundary value problem to the Euler-Poisson equations for semiconductors, which involves the vacuum for the electronic density, a challenging case because of its degeneracy and singularity. The main issue is to investigate the local well-posedness of smooth solutions to the isentropic system with an adiabatic exponent , a degenerate hyperbolic-elliptic system on the free boundary. By setting the system to the Lagrangian coordinates, we reduce it to the quasi-linear wave equation coupling the Poisson equations, where the initial degeneracy can be explicitly expressed by the function of the initial density , which equals to the distance function near boundaries. By applying the Hardy inequality and weighted Sobolev spaces depending on the distance function, we can overcome the degeneracy and singularity of the system caused by the vacuum, and we technically establish some crucial priori estimates and then prove the existence and uniqueness of the local smooth solution. This is the first result on the smooth solution to the Euler-Poisson equations for semiconductors in vacuum.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.