Theoretical analysis and numerical scheme of local conservative characteristic finite difference for 2-d advection diffusion equations

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yiyang Wang, Zhongguo Zhou
{"title":"Theoretical analysis and numerical scheme of local conservative characteristic finite difference for 2-d advection diffusion equations","authors":"Yiyang Wang,&nbsp;Zhongguo Zhou","doi":"10.1016/j.camwa.2024.09.032","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the mass conservative characteristic finite difference scheme for 2-d advection diffusion equations is analyzed. Firstly, along <em>x</em>-direction, we obtain the solutions <span><math><mo>{</mo><msubsup><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>}</mo></math></span> by applying the piecewise parabolic method (PPM) on the Lagrangian grid where <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is solved using the first-order Runge Kutta scheme. Secondly, the mass <span><math><msubsup><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> over <span><math><msub><mrow><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> are solved by the PPM scheme along <em>y</em>-direction. Finally, the local conservative characteristic finite difference scheme is constructed. By some auxiliary lemmas, we prove our scheme is stable and obtain the optimal error estimate. Our scheme is proved to be of second order convergence in space and of first order in time. Numerical experiments are used to verify the theoretical analysis.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004413","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the mass conservative characteristic finite difference scheme for 2-d advection diffusion equations is analyzed. Firstly, along x-direction, we obtain the solutions {U˜i,jn} by applying the piecewise parabolic method (PPM) on the Lagrangian grid where x¯ is solved using the first-order Runge Kutta scheme. Secondly, the mass M¯i,jn over Ω¯i,j(tn) are solved by the PPM scheme along y-direction. Finally, the local conservative characteristic finite difference scheme is constructed. By some auxiliary lemmas, we prove our scheme is stable and obtain the optimal error estimate. Our scheme is proved to be of second order convergence in space and of first order in time. Numerical experiments are used to verify the theoretical analysis.
二维平流扩散方程的局部保守特性有限差分理论分析与数值方案
本文分析了二维平流扩散方程的质量守恒特征有限差分方案。首先,沿 x 方向,在拉格朗日网格上应用片断抛物线法(PPM)得到解 {U˜i,jn},其中 x¯ 采用一阶 Runge Kutta 方案求解。其次,采用 PPM 方案沿 y 方向求解 Ω¯i,j(tn)上的质量 M¯i,jn。最后,构建局部保守特征有限差分方案。通过一些辅助定理,我们证明了我们的方案是稳定的,并得到了最优误差估计。我们的方案在空间上具有二阶收敛性,在时间上具有一阶收敛性。数值实验用于验证理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信