Dao-han Liu , Lei Wang , Lei Liu , Jun-jie Xu , Jian-qiang Wu , Pan Liu
{"title":"Application of geophysical methods in fine detection of urban concealed karst: A case study of Wuhan City, China","authors":"Dao-han Liu , Lei Wang , Lei Liu , Jun-jie Xu , Jian-qiang Wu , Pan Liu","doi":"10.31035/cg2023046","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of modern livable cities faces challenges in karst areas, including ground collapse and engineering problems. Wuhan, with a population of 13.74×10<sup>6</sup> and approximately 1161 km<sup>2</sup> of soluble rocks in the urban area of 8569.15 km<sup>2</sup>, predominantly consists of concealed karst areas where occasional ground collapse events occur, posing significant threats to underground engineering projects. To address these challenges, a comprehensive geological survey was conducted in Wuhan, focusing on major karst-related issues. Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency, non-destructiveness, and flexibility. This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst, selected eight effective geophysical methods for field experimentation, evaluated their suitability, and proposed method combinations for different karst scenarios. The results show that different geophysical methods have varying applicability for karst detection in Wuhan, and combining multiple methods enhances detection effectiveness. The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.</div></div>","PeriodicalId":45329,"journal":{"name":"China Geology","volume":"7 3","pages":"Pages 517-532"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096519224001289","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of modern livable cities faces challenges in karst areas, including ground collapse and engineering problems. Wuhan, with a population of 13.74×106 and approximately 1161 km2 of soluble rocks in the urban area of 8569.15 km2, predominantly consists of concealed karst areas where occasional ground collapse events occur, posing significant threats to underground engineering projects. To address these challenges, a comprehensive geological survey was conducted in Wuhan, focusing on major karst-related issues. Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency, non-destructiveness, and flexibility. This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst, selected eight effective geophysical methods for field experimentation, evaluated their suitability, and proposed method combinations for different karst scenarios. The results show that different geophysical methods have varying applicability for karst detection in Wuhan, and combining multiple methods enhances detection effectiveness. The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.