Optimizing thermal performance of sodium acetate trihydrate phase-change-materials through synergistic effects of binary graphene nanoadditives for prolonged hot beverage maintenance
{"title":"Optimizing thermal performance of sodium acetate trihydrate phase-change-materials through synergistic effects of binary graphene nanoadditives for prolonged hot beverage maintenance","authors":"","doi":"10.1016/j.csite.2024.105187","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium acetate trihydrate (SAT) is a promising candidate for thermal energy storage due to its high latent enthalpy and economic viability. However, limitations like supercooling and low thermal conductivity hinder its practical application. Herein, these challenges are addressed by developing a novel SAT-based composite phase change material (PCM) through incorporation of binary nanoadditives—graphene oxide (GO) and graphene nanoplatelets (GNP) to mitigate supercooling and enhance thermal conductivity, respectively. Notably, the optimal composite, SAT/0.25GO/0.75GNP, identified through systematic formulation optimization, retains a high latent enthalpy (281.09 J/g), comparable to pure SAT (290.47 J/g), with improved thermal conductivity and substantially reduced supercooling and phase separation issues. The combined effects of GO and GNP, likely due to noncovalent interactions, enhanced heat transfer in the composite, which was further tested in a vacuum mug. The SAT/0.25GO/0.75GNP composite achieved ideal drinking temperatures (60–50 °C) for hot water in just 4 minutes–18 times faster than the PCM-free control mug and 6 times faster than the Mug containing pure SAT. While the PCM-free mug maintains hot water within this interval for only 49 min, MugPCM, encapsulating pure SAT, retains heat for 76 min, and that with SAT/0.25GO/0.75GNP keeps remarkably hot for as long as 100 min.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012188","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium acetate trihydrate (SAT) is a promising candidate for thermal energy storage due to its high latent enthalpy and economic viability. However, limitations like supercooling and low thermal conductivity hinder its practical application. Herein, these challenges are addressed by developing a novel SAT-based composite phase change material (PCM) through incorporation of binary nanoadditives—graphene oxide (GO) and graphene nanoplatelets (GNP) to mitigate supercooling and enhance thermal conductivity, respectively. Notably, the optimal composite, SAT/0.25GO/0.75GNP, identified through systematic formulation optimization, retains a high latent enthalpy (281.09 J/g), comparable to pure SAT (290.47 J/g), with improved thermal conductivity and substantially reduced supercooling and phase separation issues. The combined effects of GO and GNP, likely due to noncovalent interactions, enhanced heat transfer in the composite, which was further tested in a vacuum mug. The SAT/0.25GO/0.75GNP composite achieved ideal drinking temperatures (60–50 °C) for hot water in just 4 minutes–18 times faster than the PCM-free control mug and 6 times faster than the Mug containing pure SAT. While the PCM-free mug maintains hot water within this interval for only 49 min, MugPCM, encapsulating pure SAT, retains heat for 76 min, and that with SAT/0.25GO/0.75GNP keeps remarkably hot for as long as 100 min.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.