Research on the dynamics of flame propagation and overpressure evolution in full-scale residential gas deflagration

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
{"title":"Research on the dynamics of flame propagation and overpressure evolution in full-scale residential gas deflagration","authors":"","doi":"10.1016/j.csite.2024.105204","DOIUrl":null,"url":null,"abstract":"<div><div>To determine the effect of ignition height on indoor flame spread behavior and overpressure development, a comprehensive full-scale deflagration testing facility was established. Extensive experimental research was conducted within this facility. The findings indicate that indoor flame reignition and the occurrence of secondary explosions are most pronounced with intermediate ignition. Furthermore, the explosion overpressure generated during the reverse turn of shock wave propagation is greater than that produced by the forward turn. In comparison to the peak overpressure <em>P</em><sub>ext</sub> in the master bedroom for top, middle, and bottom ignition, the peak overpressure <em>P</em><sub>ext</sub> in the second bedroom increased by approximately 14.48 %, 15.04 %, and 19.20 %, respectively. When comparing middle ignition to top ignition, the propagation speed of shock waves in the kitchen balcony, restroom, second bedroom, and master bedroom was enhanced by 34.21 %, 40.85 %, 40.70 %, and 34.65 %, respectively. Furthermore, when comparing middle ignition to bottom ignition, the propagation speed of shock waves in these areas experienced a significant increase of 126.32 %, 124.39 %, 123.26 %, and 113.86 %, respectively. These research findings provide a theoretical foundation and empirical data to support the investigation and analysis of the causes of indoor gas explosion incidents.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012358","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

To determine the effect of ignition height on indoor flame spread behavior and overpressure development, a comprehensive full-scale deflagration testing facility was established. Extensive experimental research was conducted within this facility. The findings indicate that indoor flame reignition and the occurrence of secondary explosions are most pronounced with intermediate ignition. Furthermore, the explosion overpressure generated during the reverse turn of shock wave propagation is greater than that produced by the forward turn. In comparison to the peak overpressure Pext in the master bedroom for top, middle, and bottom ignition, the peak overpressure Pext in the second bedroom increased by approximately 14.48 %, 15.04 %, and 19.20 %, respectively. When comparing middle ignition to top ignition, the propagation speed of shock waves in the kitchen balcony, restroom, second bedroom, and master bedroom was enhanced by 34.21 %, 40.85 %, 40.70 %, and 34.65 %, respectively. Furthermore, when comparing middle ignition to bottom ignition, the propagation speed of shock waves in these areas experienced a significant increase of 126.32 %, 124.39 %, 123.26 %, and 113.86 %, respectively. These research findings provide a theoretical foundation and empirical data to support the investigation and analysis of the causes of indoor gas explosion incidents.
全尺寸住宅气体爆燃中火焰传播和超压演变动力学研究
为了确定点火高度对室内火焰蔓延行为和超压发展的影响,建立了一个全面的全尺寸爆燃试验设施。在该设施内进行了广泛的实验研究。研究结果表明,在中间点火时,室内火焰复燃和二次爆炸的发生最为明显。此外,冲击波反向传播时产生的爆炸超压大于正向传播时产生的爆炸超压。与主卧室顶部、中间和底部点火时的峰值超压 Pext 相比,次卧室的峰值超压 Pext 分别增加了约 14.48 %、15.04 % 和 19.20 %。中间点火与顶部点火相比,厨房阳台、洗手间、次卧室和主卧室的冲击波传播速度分别提高了 34.21 %、40.85 %、40.70 % 和 34.65 %。此外,中间点火与底部点火相比,这些区域的冲击波传播速度分别显著增加了 126.32 %、124.39 %、123.26 % 和 113.86 %。这些研究结果为调查和分析室内气体爆炸事故的原因提供了理论基础和经验数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信