Aline Scaramuzza Aquino , Ismael dos Santos Belmonte , Cristiano Favero , Cristiane Xavier da Silva Campos , Anderson Joel Schwanke , Anne Gabriella Dias Santos , Michèle Oberson de Souza , Katia Bernardo Gusmão
{"title":"Functionalization of ionic liquids for heterogeneous catalysis in CO2 conversion: Cycloaddition of epoxides and hydrogenation","authors":"Aline Scaramuzza Aquino , Ismael dos Santos Belmonte , Cristiano Favero , Cristiane Xavier da Silva Campos , Anderson Joel Schwanke , Anne Gabriella Dias Santos , Michèle Oberson de Souza , Katia Bernardo Gusmão","doi":"10.1016/j.cattod.2024.115087","DOIUrl":null,"url":null,"abstract":"<div><div>The mitigation of environmental impacts caused by greenhouse gas emissions has become increasingly urgent, and the use of CO<sub>2</sub> as a primary carbon source is an alternative in chemical transformations, including the synthesis of organic carbonates, formic acid, or methanol. This work aims to synthesize ionic liquids from the imidazolium cation family to be used in the cycloaddition of CO<sub>2</sub> with ILs anchored in SiO<sub>2</sub>-clay heterostructure, MCM-41 and KIT-6 mesoporous materials, as well as the hydrogenation of CO<sub>2</sub> with ILs added to ruthenium complexes, i.e., two catalytic systems. The most satisfactory result for CO<sub>2</sub> cycloaddition (TON <sub>PC</sub> = 226) was obtained using the IL (MeO)<sub>3</sub>Sipmim.Cl anchored in SiO<sub>2</sub>-clay heterostructure (0.16 mol%) as the catalyst and ZnBr<sub>2</sub> (0.04 mol%) as the co-catalyst. The hydrogenation was conducted with the IL (edaO)<sub>3</sub>Sipmim.Cl and the ruthenium complex Ru-PNN were not successful, but with co-catalyst PEHA, formic acid/formamide was produced (TON <sub>Form</sub> = 552). The unique catalytic system that showed activity for forming methanol was the commercial Ru-MACHO, Ru-C<sub>29</sub>H<sub>30</sub>ClNOP<sub>2</sub>, (TON <sub>MeOH</sub> = 3.3). These results highlight the potential of ruthenium-based complexes and supported ionic liquids as active systems in CO<sub>2</sub> conversion.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"445 ","pages":"Article 115087"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124005819","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The mitigation of environmental impacts caused by greenhouse gas emissions has become increasingly urgent, and the use of CO2 as a primary carbon source is an alternative in chemical transformations, including the synthesis of organic carbonates, formic acid, or methanol. This work aims to synthesize ionic liquids from the imidazolium cation family to be used in the cycloaddition of CO2 with ILs anchored in SiO2-clay heterostructure, MCM-41 and KIT-6 mesoporous materials, as well as the hydrogenation of CO2 with ILs added to ruthenium complexes, i.e., two catalytic systems. The most satisfactory result for CO2 cycloaddition (TON PC = 226) was obtained using the IL (MeO)3Sipmim.Cl anchored in SiO2-clay heterostructure (0.16 mol%) as the catalyst and ZnBr2 (0.04 mol%) as the co-catalyst. The hydrogenation was conducted with the IL (edaO)3Sipmim.Cl and the ruthenium complex Ru-PNN were not successful, but with co-catalyst PEHA, formic acid/formamide was produced (TON Form = 552). The unique catalytic system that showed activity for forming methanol was the commercial Ru-MACHO, Ru-C29H30ClNOP2, (TON MeOH = 3.3). These results highlight the potential of ruthenium-based complexes and supported ionic liquids as active systems in CO2 conversion.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.