Mohammed Al-Khalidi , Rabab Al-Zaidi , Tarek Ali , Safiullah Khan , Ali Kashif Bashir
{"title":"AI-optimized elliptic curve with Certificate-Less Digital Signature for zero trust maritime security","authors":"Mohammed Al-Khalidi , Rabab Al-Zaidi , Tarek Ali , Safiullah Khan , Ali Kashif Bashir","doi":"10.1016/j.adhoc.2024.103669","DOIUrl":null,"url":null,"abstract":"<div><div>The proliferation of sensory applications has led to the development of the Internet of Things (IoT), which extends connectivity beyond traditional computing platforms and connects all kinds of everyday objects. Marine Ad Hoc Networks are expected to be an essential part of this connected world, forming the Internet of Marine Things (IoMaT). However, marine IoT systems are often highly distributed, and spread across large sparse areas which makes it challenging to implement and manage centralized security measures. Despite some ongoing efforts to establish network connectivity in such environment, securing these networks remains an unreached goal. The use of Certificate-Less Digital Signatures (CLDS) with Elliptic Curve Cryptography (ECC) shows great promise in providing secure communication in these networks and achieving zero trust IoMaT security. By eliminating the need for certificates and associated key management infrastructure, CLDS simplifies the key management process. ECC also enables secure communication with smaller key sizes and faster processing times, which is crucial for resource-limited IoMaT devices. In this paper, we introduce CLDS using ECC as a means of securing IoT networks in a marine environment, creating a zero trust security framework for Internet of Marine Things (IoMaT). To increase security and robustness of the framework, we optimize the ECC parameters using two vital artificial intelligence algorithms, namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Evaluation results demonstrate a reduction in ECC parameter generation time by over 40% with GA optimization and 20% with PSO optimization. Additionally, the computational cost and memory usage for major ECC attacks increased significantly by up to 40% and 67% for Rho attacks, 34% and 53% for brute-force attacks, and 30% and 67% for improved hybrid attacks, respectively.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002804","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The proliferation of sensory applications has led to the development of the Internet of Things (IoT), which extends connectivity beyond traditional computing platforms and connects all kinds of everyday objects. Marine Ad Hoc Networks are expected to be an essential part of this connected world, forming the Internet of Marine Things (IoMaT). However, marine IoT systems are often highly distributed, and spread across large sparse areas which makes it challenging to implement and manage centralized security measures. Despite some ongoing efforts to establish network connectivity in such environment, securing these networks remains an unreached goal. The use of Certificate-Less Digital Signatures (CLDS) with Elliptic Curve Cryptography (ECC) shows great promise in providing secure communication in these networks and achieving zero trust IoMaT security. By eliminating the need for certificates and associated key management infrastructure, CLDS simplifies the key management process. ECC also enables secure communication with smaller key sizes and faster processing times, which is crucial for resource-limited IoMaT devices. In this paper, we introduce CLDS using ECC as a means of securing IoT networks in a marine environment, creating a zero trust security framework for Internet of Marine Things (IoMaT). To increase security and robustness of the framework, we optimize the ECC parameters using two vital artificial intelligence algorithms, namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Evaluation results demonstrate a reduction in ECC parameter generation time by over 40% with GA optimization and 20% with PSO optimization. Additionally, the computational cost and memory usage for major ECC attacks increased significantly by up to 40% and 67% for Rho attacks, 34% and 53% for brute-force attacks, and 30% and 67% for improved hybrid attacks, respectively.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.