{"title":"A privacy-preserving Self-Supervised Learning-based intrusion detection system for 5G-V2X networks","authors":"Shajjad Hossain , Sidi-Mohammed Senouci , Bouziane Brik , Abdelwahab Boualouache","doi":"10.1016/j.adhoc.2024.103674","DOIUrl":null,"url":null,"abstract":"<div><div>In light of the ongoing transformation in the automotive industry, driven by the adoption of 5G and the proliferation of connected vehicles, network security has emerged as a critical concern. This is particularly true for the implementation of cutting-edge 5G services such as Network Slicing (NS), Software Defined Networking (SDN), and Multi-access Edge Computing (MEC). As these advanced services become more prevalent, they introduce new vulnerabilities that can be exploited by cyber attackers. Consequently, Network Intrusion Detection Systems (NIDSs) are pivotal in safeguarding vehicular networks against cyber threats. Still, their efficacy hinges on extensive data, which often contains sensitive and confidential information such as vehicle positions and owner’s behaviors, raising privacy concerns. To address this issue, we propose a Privacy-Preserving Self-Supervised Learning (SSL) based Intrusion Detection System for 5G-V2X networks. The majority of works in the literature relying on Federated Learning (FL) and often overlook data labeling on the end devices. Our methodology leverages SSL to pre-train NIDSs using unlabeled data. Post-training is then performed with a minimal amount of labeled data, which can be carefully crafted by an expert. This novel technique allows the training of NIDSs with huge datasets without compromising privacy, consequently enhancing the efficacy of cyber-attack protection. Our innovative SSL pre-training methodology has yielded remarkable results, demonstrating a substantial improvement of up to 9% in accuracy across a diverse range of training dataset sizes, including scenarios with as few as 200 data samples. Our approach highlights the potential to enhance automotive network security significantly, showcasing groundbreaking achievements that set a new standard in the field of automotive cybersecurity.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002853","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In light of the ongoing transformation in the automotive industry, driven by the adoption of 5G and the proliferation of connected vehicles, network security has emerged as a critical concern. This is particularly true for the implementation of cutting-edge 5G services such as Network Slicing (NS), Software Defined Networking (SDN), and Multi-access Edge Computing (MEC). As these advanced services become more prevalent, they introduce new vulnerabilities that can be exploited by cyber attackers. Consequently, Network Intrusion Detection Systems (NIDSs) are pivotal in safeguarding vehicular networks against cyber threats. Still, their efficacy hinges on extensive data, which often contains sensitive and confidential information such as vehicle positions and owner’s behaviors, raising privacy concerns. To address this issue, we propose a Privacy-Preserving Self-Supervised Learning (SSL) based Intrusion Detection System for 5G-V2X networks. The majority of works in the literature relying on Federated Learning (FL) and often overlook data labeling on the end devices. Our methodology leverages SSL to pre-train NIDSs using unlabeled data. Post-training is then performed with a minimal amount of labeled data, which can be carefully crafted by an expert. This novel technique allows the training of NIDSs with huge datasets without compromising privacy, consequently enhancing the efficacy of cyber-attack protection. Our innovative SSL pre-training methodology has yielded remarkable results, demonstrating a substantial improvement of up to 9% in accuracy across a diverse range of training dataset sizes, including scenarios with as few as 200 data samples. Our approach highlights the potential to enhance automotive network security significantly, showcasing groundbreaking achievements that set a new standard in the field of automotive cybersecurity.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.