{"title":"Residual multiscale attention based modulated convolutional neural network for radio link failure prediction in 5G","authors":"Ranjitham Govindasamy , Sathish Kumar Nagarajan , Jamuna Rani Muthu , M. Ramkumar","doi":"10.1016/j.adhoc.2024.103679","DOIUrl":null,"url":null,"abstract":"<div><div>In the realm of the 5 G environment, Radio Access Networks (RANs) are integral components, comprising radio base stations communicating through wireless radio links. However, this communication is susceptible to environmental variations, particularly weather conditions, leading to potential radio link failures that disrupt services. Addressing this, proactive failure prediction and resource allocation adjustments become crucial. Existing approaches neglect the relationship between weather changes and radio communication, lacking a holistic view despite their effectiveness in predicting radio link failures for one day. Therefore, the Dynamic Arithmetic Residual Multiscale attention-based Modulated Convolutional Neural Network (DARMMCNN) is proposed. This innovative model considers radio link data and weather changes as key metrics for predicting link failures. Notably, the proposed approach extends the prediction span to 5 days, surpassing the limitations of existing one-day prediction methods. In this, input data is collected from the Radio Link Failure (RLF) prediction dataset. Then, the distance correlation and noise elimination are used to improve the quality and relevance of the data. Following that, the sooty tern optimization algorithm is used for feature selection, which contributes to link failures. Next, a multiscale residual attention modulated convolutional neural network is applied for RLF prediction, and a dynamic arithmetic optimization algorithm is accomplished to tune the weight parameter of the network. The proposed work obtains 79.03 %, 65.93 %, and 67.51 % of precision, recall, and F1-score, which are better than existing techniques. The analysis shows that the proposed scheme is appropriate for RLF prediction.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002907","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of the 5 G environment, Radio Access Networks (RANs) are integral components, comprising radio base stations communicating through wireless radio links. However, this communication is susceptible to environmental variations, particularly weather conditions, leading to potential radio link failures that disrupt services. Addressing this, proactive failure prediction and resource allocation adjustments become crucial. Existing approaches neglect the relationship between weather changes and radio communication, lacking a holistic view despite their effectiveness in predicting radio link failures for one day. Therefore, the Dynamic Arithmetic Residual Multiscale attention-based Modulated Convolutional Neural Network (DARMMCNN) is proposed. This innovative model considers radio link data and weather changes as key metrics for predicting link failures. Notably, the proposed approach extends the prediction span to 5 days, surpassing the limitations of existing one-day prediction methods. In this, input data is collected from the Radio Link Failure (RLF) prediction dataset. Then, the distance correlation and noise elimination are used to improve the quality and relevance of the data. Following that, the sooty tern optimization algorithm is used for feature selection, which contributes to link failures. Next, a multiscale residual attention modulated convolutional neural network is applied for RLF prediction, and a dynamic arithmetic optimization algorithm is accomplished to tune the weight parameter of the network. The proposed work obtains 79.03 %, 65.93 %, and 67.51 % of precision, recall, and F1-score, which are better than existing techniques. The analysis shows that the proposed scheme is appropriate for RLF prediction.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.