Topological modes, vibration attenuation, and energy harvesting in electromechanical metastructures

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
E. Pantaleoni , E. Riva , A. Erturk
{"title":"Topological modes, vibration attenuation, and energy harvesting in electromechanical metastructures","authors":"E. Pantaleoni ,&nbsp;E. Riva ,&nbsp;A. Erturk","doi":"10.1016/j.ijmecsci.2024.109763","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamics of topological boundary modes in both periodic and quasi-periodic electromechanical metastructures is investigated, with a focus on their applications to energy harvesting and vibration reduction. The metastructure analyzed in this study is based on a shunted array of piezoelectric patches, with electrical parameters modulated according to the 1D Aubry–André–Harper model. As a result of this modulation, a fractal spectrum is generated near the central frequency of the resonators, a hallmark of nontrivial topology that enables the emergence of digitally controllable edge states and ensuing localization phenomena at subwavelength frequencies. In this framework, a detailed analysis of the metastructure spectral characteristics is conducted to investigate the influence of the modulation parameters on mode localization, both at the boundaries and within the interior of the beam. Such localization effects are then studied in relation to the energy harvesting, attenuation, and wave transport capabilities of the system. These functionalities point toward the realization of self-powered structures with low frequency and digitally controllable vibration attenuation capabilities, and are considered of significant technological interest in applications involving elastic waves and vibrations, where the ability to precisely control and harness these phenomena could lead to innovative solutions in energy-efficient and adaptive systems.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109763"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074032400804X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of topological boundary modes in both periodic and quasi-periodic electromechanical metastructures is investigated, with a focus on their applications to energy harvesting and vibration reduction. The metastructure analyzed in this study is based on a shunted array of piezoelectric patches, with electrical parameters modulated according to the 1D Aubry–André–Harper model. As a result of this modulation, a fractal spectrum is generated near the central frequency of the resonators, a hallmark of nontrivial topology that enables the emergence of digitally controllable edge states and ensuing localization phenomena at subwavelength frequencies. In this framework, a detailed analysis of the metastructure spectral characteristics is conducted to investigate the influence of the modulation parameters on mode localization, both at the boundaries and within the interior of the beam. Such localization effects are then studied in relation to the energy harvesting, attenuation, and wave transport capabilities of the system. These functionalities point toward the realization of self-powered structures with low frequency and digitally controllable vibration attenuation capabilities, and are considered of significant technological interest in applications involving elastic waves and vibrations, where the ability to precisely control and harness these phenomena could lead to innovative solutions in energy-efficient and adaptive systems.

Abstract Image

机电转移结构中的拓扑模式、振动衰减和能量收集
本研究探讨了周期性和准周期性机电转移结构中拓扑边界模式的动力学,重点是其在能量收集和减震方面的应用。本研究分析的元结构基于分流压电贴片阵列,其电气参数根据一维 Aubry-André-Harper 模型进行调制。这种调制的结果是,在谐振器的中心频率附近产生了分形频谱,这是非琐碎拓扑结构的一个标志,它使数字可控边缘状态和随之而来的亚波长频率局部化现象得以出现。在此框架下,我们对元结构的光谱特性进行了详细分析,以研究调制参数对光束边界和内部模式局部化的影响。然后,结合系统的能量收集、衰减和波传输能力,对这种定位效应进行研究。这些功能指向实现具有低频和数字可控振动衰减能力的自供电结构,并被认为在涉及弹性波和振动的应用中具有重要的技术意义,在这些应用中,精确控制和利用这些现象的能力可为高能效和自适应系统带来创新解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信