{"title":"Data-driven logistics collaboration for prefabricated supply chain with multiple factories","authors":"Yishu Yang , Ying Yu , Chenglin Yu , Ray Y. Zhong","doi":"10.1016/j.autcon.2024.105802","DOIUrl":null,"url":null,"abstract":"<div><div>Prefabricated construction is increasingly replacing traditional methods due to its higher productivity, superior quality, and shorter construction time. This paper aims to optimize production and logistics collaboration within a three-tier prefabricated supply chain network to reduce overall costs and enhance response efficiency. A decision model was developed that integrates factory and logistics capacity, on-site assembly sequence, and outsourcing decisions to optimize resource allocation. The model demonstrates superior cost efficiency and resource allocation effectiveness over the Earliest Due Date (EDD) method through a hypothetical case study. This result provides robust decision support for supply chain professionals, offering significant practical implications for cost reduction and resource optimization. Our findings lay a foundation for future studies on supply chain management and optimization under dynamic conditions, offering new perspectives and methodologies.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105802"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005387","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prefabricated construction is increasingly replacing traditional methods due to its higher productivity, superior quality, and shorter construction time. This paper aims to optimize production and logistics collaboration within a three-tier prefabricated supply chain network to reduce overall costs and enhance response efficiency. A decision model was developed that integrates factory and logistics capacity, on-site assembly sequence, and outsourcing decisions to optimize resource allocation. The model demonstrates superior cost efficiency and resource allocation effectiveness over the Earliest Due Date (EDD) method through a hypothetical case study. This result provides robust decision support for supply chain professionals, offering significant practical implications for cost reduction and resource optimization. Our findings lay a foundation for future studies on supply chain management and optimization under dynamic conditions, offering new perspectives and methodologies.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.