Surface interaction of expired Brilcure (Ticagrelor) drug on soft-cast steel in 0.5 M H2SO4 medium: Corrosion protection, surface characterizations and computational studies
Savitri Danappa Kotabagi , Ragini L. Minagalavar , S.K. Rajappa , Manohar R. Rathod , Ashok M. Sajjan , J.G. Suma
{"title":"Surface interaction of expired Brilcure (Ticagrelor) drug on soft-cast steel in 0.5 M H2SO4 medium: Corrosion protection, surface characterizations and computational studies","authors":"Savitri Danappa Kotabagi , Ragini L. Minagalavar , S.K. Rajappa , Manohar R. Rathod , Ashok M. Sajjan , J.G. Suma","doi":"10.1016/j.jtice.2024.105791","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Soft-cast steel (SCS) is extensively used in industry but is prone to corrosion in acidic solutions, necessitating effective protection methods. Corrosion inhibitors offer a rapid, easy, and economical solution. However, expired ticagrelor (Brilcure) poses environmental risks when discarded due to its active components. Therefore, this study explores the use of expired ticagrelor (<em>TCGL</em>) to prevent SCS corrosion in sulfuric acid, utilizing its active components, such as N and O atoms and conjugated bonds, as adsorption centers while being environmentally friendly.</div></div><div><h3>Methods</h3><div>The corrosion inhibition and adsorption properties of <em>TCGL</em> on SCS in 0.5 M H<sub>2</sub>SO<sub>4</sub> were investigated using weight loss, potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques. Surface characterization of SCS was performed using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), and water contact angle (WCA) measurements. The adsorption behavior of <em>TCGL</em> followed the Langmuir isotherm model. Additionally, density functional theory (DFT) and molecular dynamics (MD) simulations were employed to elucidate the bonding interactions between <em>TCGL</em> and the metal surface.</div></div><div><h3>Significant findings</h3><div>Ticagrelor achieved 98.99 % inhibition efficiency at 250 ppm by adsorbing on the steel surface, forming a protective film. PDP studies showed decreased corrosion current density and a potential shift from -0.53 V to -0.49 V. SEM and AFM confirmed significant protection. DFT and MD simulations identified active sites and molecular mechanisms, highlighting Ticagrelor's potential as an effective, eco-friendly corrosion inhibitor for SCS.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105791"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004498","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Soft-cast steel (SCS) is extensively used in industry but is prone to corrosion in acidic solutions, necessitating effective protection methods. Corrosion inhibitors offer a rapid, easy, and economical solution. However, expired ticagrelor (Brilcure) poses environmental risks when discarded due to its active components. Therefore, this study explores the use of expired ticagrelor (TCGL) to prevent SCS corrosion in sulfuric acid, utilizing its active components, such as N and O atoms and conjugated bonds, as adsorption centers while being environmentally friendly.
Methods
The corrosion inhibition and adsorption properties of TCGL on SCS in 0.5 M H2SO4 were investigated using weight loss, potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques. Surface characterization of SCS was performed using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), and water contact angle (WCA) measurements. The adsorption behavior of TCGL followed the Langmuir isotherm model. Additionally, density functional theory (DFT) and molecular dynamics (MD) simulations were employed to elucidate the bonding interactions between TCGL and the metal surface.
Significant findings
Ticagrelor achieved 98.99 % inhibition efficiency at 250 ppm by adsorbing on the steel surface, forming a protective film. PDP studies showed decreased corrosion current density and a potential shift from -0.53 V to -0.49 V. SEM and AFM confirmed significant protection. DFT and MD simulations identified active sites and molecular mechanisms, highlighting Ticagrelor's potential as an effective, eco-friendly corrosion inhibitor for SCS.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.