Automated retrieval of cattle body measurements from unmanned aerial vehicle-based LiDAR point clouds

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
{"title":"Automated retrieval of cattle body measurements from unmanned aerial vehicle-based LiDAR point clouds","authors":"","doi":"10.1016/j.compag.2024.109521","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate body measurements are crucial for effective management of cattle growth in precision livestock farming. This study introduces a novel noncontact approach that leverages point clouds acquired by unmanned aerial vehicle (UAV) based LiDAR to obtain body measurements of cattle within their natural husbandry conditions. The experiment encompasses 36 LiDAR scanning campaigns, six during the nighttime, using various combinations of flight speed and height. An automated procedure for retrieving body measurements is applied to pre-processed cattle point clouds, with a total of 276 individual animals segmented from campaign-generated point clouds using an automated segmentation procedure. The procedure uses identified body-marks to extract six body measurements from each cattle point cloud. To enhance the accuracy of the extracted body measurement dataset, multivariate analysis of variance (MANOVA) is used, facilitating the adjustment of the dataset that excludes data derived at flight heights of <span><math><mrow><mn>30</mn><mspace></mspace><mi>m</mi></mrow></math></span> and <span><math><mrow><mn>50</mn><mspace></mspace><mi>m</mi></mrow></math></span> or flight speeds of <span><math><mrow><mn>7</mn><mspace></mspace><mi>m/s</mi></mrow></math></span> and <span><math><mrow><mn>9</mn><mspace></mspace><mi>m/s</mi></mrow></math></span>. The reference dataset validates the adjustment effectiveness, demonstrating substantial reductions in mean absolute error (MAE), such as the vertical gap measurement (<span><math><mrow><mi>h</mi><mn>1</mn></mrow></math></span>) on reference objects, from <span><math><mrow><mn>2</mn><mspace></mspace><mi>cm</mi></mrow></math></span> to <span><math><mrow><mn>2</mn><mspace></mspace><mi>mm</mi></mrow></math></span>. Furthermore, the study delves into anatomical hip height (HH’) estimation by developing a 10-fold cross-validation linear regression model based on the training dataset of 136 pairs of waist height and hip height (HH) derived with a manually added auxiliary plane. The model yields the estimation of the HH’ with <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.84, MAE of <span><math><mrow><mn>0</mn><mo>.</mo><mn>012</mn><mspace></mspace><mi>m</mi></mrow></math></span>, and RMSE of <span><math><mrow><mn>0</mn><mo>.</mo><mn>015</mn><mspace></mspace><mi>m</mi></mrow></math></span>. Moreover, this study proposes a dual rotation algorithm to normalise cattle head orientation. The results of this study contribute to the advancement of using UAV-based LiDAR for cattle growth management.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924009128","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate body measurements are crucial for effective management of cattle growth in precision livestock farming. This study introduces a novel noncontact approach that leverages point clouds acquired by unmanned aerial vehicle (UAV) based LiDAR to obtain body measurements of cattle within their natural husbandry conditions. The experiment encompasses 36 LiDAR scanning campaigns, six during the nighttime, using various combinations of flight speed and height. An automated procedure for retrieving body measurements is applied to pre-processed cattle point clouds, with a total of 276 individual animals segmented from campaign-generated point clouds using an automated segmentation procedure. The procedure uses identified body-marks to extract six body measurements from each cattle point cloud. To enhance the accuracy of the extracted body measurement dataset, multivariate analysis of variance (MANOVA) is used, facilitating the adjustment of the dataset that excludes data derived at flight heights of 30m and 50m or flight speeds of 7m/s and 9m/s. The reference dataset validates the adjustment effectiveness, demonstrating substantial reductions in mean absolute error (MAE), such as the vertical gap measurement (h1) on reference objects, from 2cm to 2mm. Furthermore, the study delves into anatomical hip height (HH’) estimation by developing a 10-fold cross-validation linear regression model based on the training dataset of 136 pairs of waist height and hip height (HH) derived with a manually added auxiliary plane. The model yields the estimation of the HH’ with R2 of 0.84, MAE of 0.012m, and RMSE of 0.015m. Moreover, this study proposes a dual rotation algorithm to normalise cattle head orientation. The results of this study contribute to the advancement of using UAV-based LiDAR for cattle growth management.
从基于无人机的激光雷达点云中自动检索牛体测量值
在精准畜牧业中,精确的牛体测量对于有效管理牛的生长至关重要。本研究介绍了一种新颖的非接触式方法,该方法利用基于激光雷达的无人飞行器(UAV)获取的点云来获取牛在自然饲养条件下的身体测量值。实验包括 36 次激光雷达扫描活动,其中 6 次在夜间进行,采用了不同的飞行速度和高度组合。检索牛体测量值的自动程序适用于预处理的牛体点云,使用自动分割程序从扫描活动生成的点云中共分割出 276 头牛。该程序使用已识别的身体标记从每头牛的点云中提取六个身体测量值。为了提高提取的身体测量数据集的准确性,使用了多变量方差分析(MANOVA),以便于调整数据集,排除在飞行高度为 30 米和 50 米或飞行速度为 7 米/秒和 9 米/秒时获得的数据。参考数据集验证了调整的有效性,表明平均绝对误差(MAE)大幅降低,例如参考物体的垂直间隙测量值(h1)从 2 厘米降至 2 毫米。此外,该研究还深入研究了解剖学臀高(HH')估算,基于 136 对腰高和臀高(HH)的训练数据集开发了一个 10 倍交叉验证线性回归模型,该数据集由人工添加的辅助平面得出。该模型对 HH 的估计值 R2 为 0.84,MAE 为 0.012m,RMSE 为 0.015m。此外,本研究还提出了一种双旋转算法,用于对牛头方向进行归一化处理。本研究的结果有助于推动将基于无人机的激光雷达用于牛的生长管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信