A shell equilibrium modeling for stress distribution of offshore tubular joints

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Yongkang Zheng , Zhihao Chen , Hongliang Qian , Ping Wang , Zhenggang Cao
{"title":"A shell equilibrium modeling for stress distribution of offshore tubular joints","authors":"Yongkang Zheng ,&nbsp;Zhihao Chen ,&nbsp;Hongliang Qian ,&nbsp;Ping Wang ,&nbsp;Zhenggang Cao","doi":"10.1016/j.ijpvp.2024.105334","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an optimal shell element modeling approach for tubular joints in ocean engineering was developed utilizing a structural stress analysis. Setting the weld seam thickness of the shell element model to the weld throat size ensured equivalent stiffness between the shell and solid element models. The accuracy of the proposed shell element model was verified by comparing the hot spot stress obtained from the axial loading tests of the three-plane Y-joints carry out by Dalian University of Technology (DUT). The influence of the ratio of chord outer diameter to wall thickness (<em>γ</em>) and the ratio of brace outer diameter to chord outer diameter (<em>β</em>) on stress concentration of K-joints was investigated to evaluate the fatigue performance. The results revealed that for K-joints where the chord is in tension, the <em>β</em> should be as close to 0.5 as possible and should minimize the <em>γ</em> to reduce the stress concentration. For the brace of K-joints under tension, as <em>β</em> and <em>γ</em> increases, the location of fatigue crack initiation transitions from the lower weld toe to the upper weld toe. The <em>β</em> should be avoided around 0.5 and the <em>γ</em> should be as small as possible to minimize the stress concentration.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105334"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124002114","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an optimal shell element modeling approach for tubular joints in ocean engineering was developed utilizing a structural stress analysis. Setting the weld seam thickness of the shell element model to the weld throat size ensured equivalent stiffness between the shell and solid element models. The accuracy of the proposed shell element model was verified by comparing the hot spot stress obtained from the axial loading tests of the three-plane Y-joints carry out by Dalian University of Technology (DUT). The influence of the ratio of chord outer diameter to wall thickness (γ) and the ratio of brace outer diameter to chord outer diameter (β) on stress concentration of K-joints was investigated to evaluate the fatigue performance. The results revealed that for K-joints where the chord is in tension, the β should be as close to 0.5 as possible and should minimize the γ to reduce the stress concentration. For the brace of K-joints under tension, as β and γ increases, the location of fatigue crack initiation transitions from the lower weld toe to the upper weld toe. The β should be avoided around 0.5 and the γ should be as small as possible to minimize the stress concentration.
海上管接头应力分布的壳体平衡模型
本研究利用结构应力分析,为海洋工程中的管状接头开发了一种最佳壳体元素建模方法。将壳元素模型的焊缝厚度设定为焊缝喉部尺寸,确保了壳元素模型和实体元素模型之间的等效刚度。通过比较大连理工大学(DUT)三平面 Y 型接头轴向加载试验获得的热点应力,验证了所提出的壳体元素模型的准确性。研究了弦外径与壁厚之比(γ)和支撑外径与弦外径之比(β)对 K 型接头应力集中的影响,以评估其疲劳性能。结果表明,对于弦处于拉伸状态的 K 型关节,β 应尽可能接近 0.5,并应尽量减小 γ 以减少应力集中。对于拉伸状态下的 K 型接头支撑,随着 β 和 γ 的增大,疲劳裂纹的起始位置会从下焊趾过渡到上焊趾。β 应避免在 0.5 左右,γ 应尽可能小,以尽量减少应力集中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信