{"title":"Microstructure and property evolution of CuCr50 alloy prepared by aluminum thermal reduction-electromagnetic casting during hot forging process","authors":"Wang An , Zhi-he Dou , Ting-an Zhang , Jin-ru Han","doi":"10.1016/j.matchar.2024.114400","DOIUrl":null,"url":null,"abstract":"<div><div>To address the problems of low performance and density in CuCr50 alloys prepared by aluminum thermal reduction-electromagnetic casting, a synergistic process involving hot forging deformation to eliminate micropores in the alloy and heat treatment to modify the alloy was proposed. The effect of hot forging temperature on the microstructure evolution and performance strengthening of CuCr50 alloys during heat treatment was studied. The results show that the properties of CuCr50 alloys forged at different temperatures after heat treatment are better than those after direct heat treatment. After heat treatment, the conductivity of CuCr50 alloys forged at 800 °C reaches 22.41 MS/m, the density reaches 7.94 g/cm<sup>3</sup>, and the hardness reaches 112 HB, which are 73.59 %, 4.75 % and 37.59 % greater than those of the as-cast alloy, respectively. The microstructure analysis showed that the nano-Cr phase precipitated during the aging process of CuCr50 alloys after hot forging at 750 °C–850 °C had a semi-coherent relationship with the Cu matrix, which played a role in coherent strengthening. After hot forging at 900 °C, the precipitated Cr phase has an incoherent relationship with the Cu matrix, which played a role of dispersion strengthening. The performance test of 40.5 kV simulated vacuum interrupter shows that the breaking and chopping performance of the prepared CuCr50 contact material is obviously better than that of commercial products, which is expected to become a new process for the preparation of high performance CuCr contact materials.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"217 ","pages":"Article 114400"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324007812","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
To address the problems of low performance and density in CuCr50 alloys prepared by aluminum thermal reduction-electromagnetic casting, a synergistic process involving hot forging deformation to eliminate micropores in the alloy and heat treatment to modify the alloy was proposed. The effect of hot forging temperature on the microstructure evolution and performance strengthening of CuCr50 alloys during heat treatment was studied. The results show that the properties of CuCr50 alloys forged at different temperatures after heat treatment are better than those after direct heat treatment. After heat treatment, the conductivity of CuCr50 alloys forged at 800 °C reaches 22.41 MS/m, the density reaches 7.94 g/cm3, and the hardness reaches 112 HB, which are 73.59 %, 4.75 % and 37.59 % greater than those of the as-cast alloy, respectively. The microstructure analysis showed that the nano-Cr phase precipitated during the aging process of CuCr50 alloys after hot forging at 750 °C–850 °C had a semi-coherent relationship with the Cu matrix, which played a role in coherent strengthening. After hot forging at 900 °C, the precipitated Cr phase has an incoherent relationship with the Cu matrix, which played a role of dispersion strengthening. The performance test of 40.5 kV simulated vacuum interrupter shows that the breaking and chopping performance of the prepared CuCr50 contact material is obviously better than that of commercial products, which is expected to become a new process for the preparation of high performance CuCr contact materials.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.