The effect of oxide scale on the corrosion resistance of SUS301L stainless steel welding joints

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
{"title":"The effect of oxide scale on the corrosion resistance of SUS301L stainless steel welding joints","authors":"","doi":"10.1016/j.matchar.2024.114431","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of thermal oxidates on the corrosion of SUS301L stainless steel welded joint was investigated using electrochemical corrosion test and TEM microstructure observation. Activation dissolution behavior without passive region was found in the potentiodynamic polarization curves on the welding zone and heat affected zone. The activation corrosion is related to the preferential dissolution of the Ni<img>Fe layer at the interface between chromium oxide and substrate. However, the passive region in the polarization curve reappears after the unstable Ni<img>Fe dissolves in the salt-frog test. The passivation behavior due to microstructure evolution beneath the thermal oxide film was discussed during the corrosion process.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104458032400812X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of thermal oxidates on the corrosion of SUS301L stainless steel welded joint was investigated using electrochemical corrosion test and TEM microstructure observation. Activation dissolution behavior without passive region was found in the potentiodynamic polarization curves on the welding zone and heat affected zone. The activation corrosion is related to the preferential dissolution of the NiFe layer at the interface between chromium oxide and substrate. However, the passive region in the polarization curve reappears after the unstable NiFe dissolves in the salt-frog test. The passivation behavior due to microstructure evolution beneath the thermal oxide film was discussed during the corrosion process.
氧化鳞对 SUS301L 不锈钢焊接接头耐腐蚀性的影响
利用电化学腐蚀试验和 TEM 显微结构观察研究了热氧化物对 SUS301L 不锈钢焊接接头腐蚀的影响。在焊接区和热影响区的电位极化曲线中发现了无被动区的活化溶解行为。活化腐蚀与氧化铬和基体界面上的镍铁合金层优先溶解有关。然而,在盐蛙试验中,不稳定的镍铁层溶解后,极化曲线中的被动区再次出现。在腐蚀过程中,讨论了热氧化膜下微观结构演变导致的钝化行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信