Nonlinear dynamics of micropolar two-phase fluids: Multiple exact solutions

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Waqar Khan Usafzai , Emad H. Aly , Ioan Pop
{"title":"Nonlinear dynamics of micropolar two-phase fluids: Multiple exact solutions","authors":"Waqar Khan Usafzai ,&nbsp;Emad H. Aly ,&nbsp;Ioan Pop","doi":"10.1016/j.cjph.2024.09.034","DOIUrl":null,"url":null,"abstract":"<div><div>Dual and triple solutions induced by a flexible planar surface for a micropolar two-phase fluid model are studied. The two-phase behavior in the micropolar fluid model occurs due to phase transitions between the fluid phases, influenced by interfacial stresses and heat transfer. The physical implications of these transitions are significant in understanding flow behavior under different mechanical and thermal conditions. This study examines the critical parameters and conditions that lead to these phase transitions, resulting in dual or triple solutions in the flow dynamics. The flow and thermal fields are exact solutions of the steady, two-dimensional two-phase micropolar fluid equations in the form of similarity solution. It is shown that dual and triple exact solutions exist for a highly nonlinear system. Triple solutions exist for the skin friction and temperature gradient identified by the critical numbers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> and <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>.</mo></mrow></math></span> It is noted that for sufficiently small values of stretching strength parameter the dual branches for two of the triple solutions exist only in the regions <span><math><mrow><mi>μ</mi><mo>≥</mo><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub><mo>,</mo></mrow></math></span> and <span><math><mrow><mi>μ</mi><mo>≤</mo><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub><mo>=</mo><mo>−</mo><mn>5</mn><mo>.</mo><mn>23</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msub><mo>=</mo><mo>−</mo><mn>7</mn><mo>.</mo><mn>72</mn><mo>.</mo></mrow></math></span> Numerical results are also provided, validating the model and offering insights into its accuracy and behavior of the model.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003794","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dual and triple solutions induced by a flexible planar surface for a micropolar two-phase fluid model are studied. The two-phase behavior in the micropolar fluid model occurs due to phase transitions between the fluid phases, influenced by interfacial stresses and heat transfer. The physical implications of these transitions are significant in understanding flow behavior under different mechanical and thermal conditions. This study examines the critical parameters and conditions that lead to these phase transitions, resulting in dual or triple solutions in the flow dynamics. The flow and thermal fields are exact solutions of the steady, two-dimensional two-phase micropolar fluid equations in the form of similarity solution. It is shown that dual and triple exact solutions exist for a highly nonlinear system. Triple solutions exist for the skin friction and temperature gradient identified by the critical numbers ac and μc. It is noted that for sufficiently small values of stretching strength parameter the dual branches for two of the triple solutions exist only in the regions μμc3, and μμc4, where μc3=5.23 and μc4=7.72. Numerical results are also provided, validating the model and offering insights into its accuracy and behavior of the model.

Abstract Image

微波两相流体的非线性动力学:多重精确解
研究了微波两相流体模型的柔性平面所诱发的双解和三解。受界面应力和热传导的影响,流体相之间会发生相变,从而导致微极性流体模型中的两相行为。这些转变的物理意义对于理解不同机械和热条件下的流动行为非常重要。本研究探讨了导致这些相变的关键参数和条件,这些参数和条件导致了流动动力学中的双重或三重解。流场和热场是稳定的二维两相微极流体方程以相似解形式的精确解。研究表明,高度非线性系统存在二重和三重精确解。对于临界数 ac 和 μc 所确定的皮肤摩擦和温度梯度,存在三重解。值得注意的是,对于足够小的拉伸强度参数值,三重解中的两个二重分支只存在于μ≥μc3和μ≤μc4区域,其中μc3=-5.23和μc4=-7.72。此外,还提供了数值结果,验证了模型,并对模型的准确性和行为提出了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信