{"title":"Non-contact mechanical Q-factor measurement system based on electromagnetic acoustic transducer","authors":"Masatoshi Tsuchida, Takeshi Morita","doi":"10.1016/j.precisioneng.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical quality factor (Q-factor), which is the reciprocal of the vibration loss constant, is one of the most important parameters in vibration engineering; however, there are no methods for its precise measurement. Q-factor databases are thus commonly used. This study proposes a completely non-contact measurement system for the Q-factor that combines non-contact excitation (achieved using an electromagnetic acoustic transducer) with non-contact support (achieved using near-field ultrasonic levitation based on two Langevin transducers). The proposed method was used to measure the Q-factor for a stainless steel (SUS304) sample (thin cylindrical rod with a diameter of 1.5 mm and a length of 80 mm)and a duralumin (A2017). The 5 times average Q-factor was 2010 with standard deviation of 50 for stainless steel (SUS304), and 49,000 with standard deviation of 3900 for duralumin (A2017). The proposed method also allowed for the measurement of Young’s modulus, resulting in 217.17 ± 0.34 GPa for stainless steel (SUS304), and 71.39 ± 0.20 GPa for duralumin (A2017).</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 390-395"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002198","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical quality factor (Q-factor), which is the reciprocal of the vibration loss constant, is one of the most important parameters in vibration engineering; however, there are no methods for its precise measurement. Q-factor databases are thus commonly used. This study proposes a completely non-contact measurement system for the Q-factor that combines non-contact excitation (achieved using an electromagnetic acoustic transducer) with non-contact support (achieved using near-field ultrasonic levitation based on two Langevin transducers). The proposed method was used to measure the Q-factor for a stainless steel (SUS304) sample (thin cylindrical rod with a diameter of 1.5 mm and a length of 80 mm)and a duralumin (A2017). The 5 times average Q-factor was 2010 with standard deviation of 50 for stainless steel (SUS304), and 49,000 with standard deviation of 3900 for duralumin (A2017). The proposed method also allowed for the measurement of Young’s modulus, resulting in 217.17 ± 0.34 GPa for stainless steel (SUS304), and 71.39 ± 0.20 GPa for duralumin (A2017).
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.