Fatigue-creep damage model for carbon fibre reinforced composites under high temperature cyclic loading

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Yi-Er Guo , De-Guang Shang , Lin-Xuan Zuo , Lin-Feng Qu , Chao-Lin Chen
{"title":"Fatigue-creep damage model for carbon fibre reinforced composites under high temperature cyclic loading","authors":"Yi-Er Guo ,&nbsp;De-Guang Shang ,&nbsp;Lin-Xuan Zuo ,&nbsp;Lin-Feng Qu ,&nbsp;Chao-Lin Chen","doi":"10.1016/j.compscitech.2024.110909","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a fatigue-creep damage model that can take into account the interaction of fatigue and creep damage is proposed under high temperature cyclic loading. In the proposed model, the effect of temperature on creep damage, the variation of creep damage under different high temperature cyclic loading conditions, and fatigue-creep interaction damage are considered. In addition, in order to accurately describe the creep behavior of unidirectional laminates with different orientations, the damage mechanism of unidirectional laminates was also analyzed. The creep and fatigue test results at different temperatures showed that the proposed creep rupture time model and the fatigue-creep damage model considering the damage mechanisms can successfully predict the creep and fatigue lives of unidirectional laminates at high temperature, and the prediction results are in good agreement with the experimental data.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110909"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004792","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a fatigue-creep damage model that can take into account the interaction of fatigue and creep damage is proposed under high temperature cyclic loading. In the proposed model, the effect of temperature on creep damage, the variation of creep damage under different high temperature cyclic loading conditions, and fatigue-creep interaction damage are considered. In addition, in order to accurately describe the creep behavior of unidirectional laminates with different orientations, the damage mechanism of unidirectional laminates was also analyzed. The creep and fatigue test results at different temperatures showed that the proposed creep rupture time model and the fatigue-creep damage model considering the damage mechanisms can successfully predict the creep and fatigue lives of unidirectional laminates at high temperature, and the prediction results are in good agreement with the experimental data.

Abstract Image

高温循环加载下碳纤维增强复合材料的疲劳-蠕变损伤模型
本文提出了一种疲劳-蠕变损伤模型,该模型可考虑高温循环加载条件下疲劳与蠕变损伤的相互作用。在所提出的模型中,考虑了温度对蠕变损伤的影响、不同高温循环加载条件下蠕变损伤的变化以及疲劳-蠕变交互损伤。此外,为了准确描述不同取向单向层压板的蠕变行为,还分析了单向层压板的损伤机理。不同温度下的蠕变和疲劳试验结果表明,所提出的蠕变断裂时间模型和考虑损伤机理的疲劳-蠕变损伤模型可以成功预测单向层压板在高温下的蠕变和疲劳寿命,预测结果与实验数据吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信