Zhaoguang Zheng , Jiayi Hu , Yao Qian , Jingmang Xu , Mingyang Hou
{"title":"The influence of elastic pads deterioration in the fastening system on the dynamic characteristics of the vehicle-turnout system","authors":"Zhaoguang Zheng , Jiayi Hu , Yao Qian , Jingmang Xu , Mingyang Hou","doi":"10.1016/j.engfailanal.2024.108936","DOIUrl":null,"url":null,"abstract":"<div><div>The deterioration of the elastic pads in the fastening system in high-speed turnout areas increases longitudinal stiffness irregularities along the track, posing potential hazards to wheel-rail impact and train running safety. This paper takes the frog area of No. 18 turnout as an example and constructs a vehicle-turnout rigid-flexible coupling model considering the detailed structure of the fastener elastic pads. By increasing the stiffness of the rubber pad under the tie plate to simulate the deterioration of the elastic pads in the turnout area, the study investigates the effects of deterioration location, degree, and number on the dynamic characteristics of the vehicle-turnout system, providing theoretical guidance for stiffness optimization and maintenance of the turnout area. The results indicate that: 1) the deterioration of the elastic pads significantly affects wheel-rail interaction and safety indicators, while having a minor effect on vehicle running stability; 2) the 95th sleeper (point rail with a top width of 60 mm) is identified as the most critical location for the deterioration of elastic pads; 3) comprehensively considering, the stiffness replacement limit for elastic pads in ballastless turnout areas can be set to twice the design stiffness, which is 50 kN/mm.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630724009828","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The deterioration of the elastic pads in the fastening system in high-speed turnout areas increases longitudinal stiffness irregularities along the track, posing potential hazards to wheel-rail impact and train running safety. This paper takes the frog area of No. 18 turnout as an example and constructs a vehicle-turnout rigid-flexible coupling model considering the detailed structure of the fastener elastic pads. By increasing the stiffness of the rubber pad under the tie plate to simulate the deterioration of the elastic pads in the turnout area, the study investigates the effects of deterioration location, degree, and number on the dynamic characteristics of the vehicle-turnout system, providing theoretical guidance for stiffness optimization and maintenance of the turnout area. The results indicate that: 1) the deterioration of the elastic pads significantly affects wheel-rail interaction and safety indicators, while having a minor effect on vehicle running stability; 2) the 95th sleeper (point rail with a top width of 60 mm) is identified as the most critical location for the deterioration of elastic pads; 3) comprehensively considering, the stiffness replacement limit for elastic pads in ballastless turnout areas can be set to twice the design stiffness, which is 50 kN/mm.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.