{"title":"Diverse kinetic pathways in shock-compressed phase transitions of a metallic single crystal","authors":"","doi":"10.1016/j.mtla.2024.102245","DOIUrl":null,"url":null,"abstract":"<div><div>Substantial gaps in solid-solid phase boundaries under hydrostatic and uniaxial compression have recently garnered great attention, though the underlying physics remains unclear. In this study, through molecular dynamics simulations of shock-compressed fcc Cu single crystals, we report pronounced orientation-dependent fcc-to-bcc phase transition pressures following the trend [100] < [110] < [111] ≈ thermodynamic phase boundary. We uncover a fundamental crystallographic law that explains these phase boundary gaps, rooted in the classical orientational relationship of martensitic transformations: the degree of alignment between loading directions and the easiest atomic moving path plays a critical role in determining phase transition pathways. The complex, orientation-dependent phase transition pathways and the observed temperature equilibrium efficiency ranking [100] > [110] > [111] further support the validity of this crystallographic law. This law is broadly applicable to fcc crystals, indicating that phase composition can be controlled by the method of compression, providing a new framework for selective polymorph formation.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Substantial gaps in solid-solid phase boundaries under hydrostatic and uniaxial compression have recently garnered great attention, though the underlying physics remains unclear. In this study, through molecular dynamics simulations of shock-compressed fcc Cu single crystals, we report pronounced orientation-dependent fcc-to-bcc phase transition pressures following the trend [100] < [110] < [111] ≈ thermodynamic phase boundary. We uncover a fundamental crystallographic law that explains these phase boundary gaps, rooted in the classical orientational relationship of martensitic transformations: the degree of alignment between loading directions and the easiest atomic moving path plays a critical role in determining phase transition pathways. The complex, orientation-dependent phase transition pathways and the observed temperature equilibrium efficiency ranking [100] > [110] > [111] further support the validity of this crystallographic law. This law is broadly applicable to fcc crystals, indicating that phase composition can be controlled by the method of compression, providing a new framework for selective polymorph formation.