Guodong Zhang , Bo Cui , Qianduo Zhuang , Kang Wang , Zan Li , Di Zhang
{"title":"The cruciality of particle size and shape on fracture mechanism of aluminum matrix composites","authors":"Guodong Zhang , Bo Cui , Qianduo Zhuang , Kang Wang , Zan Li , Di Zhang","doi":"10.1016/j.mtla.2024.102252","DOIUrl":null,"url":null,"abstract":"<div><div>Metal matrix composites are generally believed to achieve better performance with spherical reinforcements than irregular ones. In this work, through experiments and computational simulations, we have demonstrated that spherical reinforcements do not necessarily enhance the tensile ductility of composites. There exists a critical size for spherical particles. Using an Al<sub>2</sub>O<sub>3</sub>-Al2024 composite as an example, we found that when the size of spherical Al<sub>2</sub>O<sub>3</sub> particles is less than 3 µm, they are not fractured during deformation, resulting in enhanced ductility. We elucidated the competitive mechanism between particle and matrix fracture under various reinforcement sizes and volume fractions, and constructed a deformation map that can be utilized to determine fracture mechanisms. This work clarifies the micro-mechanical mechanisms of reinforcements on material fracture behavior, providing guidance for the design and fabrication of strong and ductile metal matrix composites.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102252"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal matrix composites are generally believed to achieve better performance with spherical reinforcements than irregular ones. In this work, through experiments and computational simulations, we have demonstrated that spherical reinforcements do not necessarily enhance the tensile ductility of composites. There exists a critical size for spherical particles. Using an Al2O3-Al2024 composite as an example, we found that when the size of spherical Al2O3 particles is less than 3 µm, they are not fractured during deformation, resulting in enhanced ductility. We elucidated the competitive mechanism between particle and matrix fracture under various reinforcement sizes and volume fractions, and constructed a deformation map that can be utilized to determine fracture mechanisms. This work clarifies the micro-mechanical mechanisms of reinforcements on material fracture behavior, providing guidance for the design and fabrication of strong and ductile metal matrix composites.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).