Tensile properties and work hardening in Al0.3CoCrFeNi: The role of L12 precipitates and grain size

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Stéphane Gorsse , Florian Peyrouzet , Thierry Baffie , Christelle Navone , Julie Maisonneuve , François Saint-Antonin , Marion Descoins , Khalid Hoummada , Rajarshi Barnerjee , An-Chou Yeh , Mohamed Gouné
{"title":"Tensile properties and work hardening in Al0.3CoCrFeNi: The role of L12 precipitates and grain size","authors":"Stéphane Gorsse ,&nbsp;Florian Peyrouzet ,&nbsp;Thierry Baffie ,&nbsp;Christelle Navone ,&nbsp;Julie Maisonneuve ,&nbsp;François Saint-Antonin ,&nbsp;Marion Descoins ,&nbsp;Khalid Hoummada ,&nbsp;Rajarshi Barnerjee ,&nbsp;An-Chou Yeh ,&nbsp;Mohamed Gouné","doi":"10.1016/j.mtla.2024.102250","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the FCC-Al<sub>0.3</sub>CoCrFeNi high entropy alloy fabricated via spark plasma sintering of atomized powders, focusing on its mechanical and work-hardening properties across three distinct microstructures: coarse-grained, fine-grained, and fine-grained with L1<sub>2</sub> nano-precipitates. Using a dislocation density-based model, we analyze the effects of grain size and L1<sub>2</sub> precipitates on these properties, achieving quantitative agreement between model predictions and experimental tensile and work-hardening behaviors. This exploration highlights the underlying deformation mechanisms at room temperature and their contributions to the strength/ductility trade-off. Significantly, our analysis reveals that twinning in HEAs manifests differently from that observed in steels. Furthermore, the incorporation of L1<sub>2</sub> precipitates emerges as a critical factor enhancing the alloy's mechanical attributes. Our findings underscore the essential roles of microstructural parameters in tailoring the mechanical properties of HEAs, offering insights that could guide the design of advanced alloys with optimized performance.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102250"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the FCC-Al0.3CoCrFeNi high entropy alloy fabricated via spark plasma sintering of atomized powders, focusing on its mechanical and work-hardening properties across three distinct microstructures: coarse-grained, fine-grained, and fine-grained with L12 nano-precipitates. Using a dislocation density-based model, we analyze the effects of grain size and L12 precipitates on these properties, achieving quantitative agreement between model predictions and experimental tensile and work-hardening behaviors. This exploration highlights the underlying deformation mechanisms at room temperature and their contributions to the strength/ductility trade-off. Significantly, our analysis reveals that twinning in HEAs manifests differently from that observed in steels. Furthermore, the incorporation of L12 precipitates emerges as a critical factor enhancing the alloy's mechanical attributes. Our findings underscore the essential roles of microstructural parameters in tailoring the mechanical properties of HEAs, offering insights that could guide the design of advanced alloys with optimized performance.

Abstract Image

Al0.3CoCrFeNi 的拉伸性能和加工硬化:L12析出物和晶粒大小的作用
在本研究中,我们研究了通过雾化粉末的火花等离子烧结制造的 FCC-Al0.3CoCrFeNi 高熵合金,重点研究了其在三种不同微观结构(粗晶粒、细晶粒和带有 L12 纳米析出物的细晶粒)下的机械性能和加工硬化性能。利用基于位错密度的模型,我们分析了晶粒大小和 L12 沉淀物对这些性能的影响,实现了模型预测与实验拉伸和加工硬化行为之间的定量一致。这一探索凸显了室温下的基本变形机制及其对强度/电导率权衡的贡献。值得注意的是,我们的分析表明,HEAs 中的孪生现象与钢中观察到的孪生现象不同。此外,L12 沉淀物的加入是增强合金机械属性的关键因素。我们的研究结果强调了微结构参数在定制 HEAs 机械性能中的重要作用,为设计具有优化性能的先进合金提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信