Ultrasound-activated mechanochemical reactions for controllable biomedical applications

Q1 Engineering
Maocheng Zuo , Rong Xiao , Fangxue Du , Chong Cheng , Raul D. Rodriguez , Lang Ma , Bihui Zhu , Li Qiu
{"title":"Ultrasound-activated mechanochemical reactions for controllable biomedical applications","authors":"Maocheng Zuo ,&nbsp;Rong Xiao ,&nbsp;Fangxue Du ,&nbsp;Chong Cheng ,&nbsp;Raul D. Rodriguez ,&nbsp;Lang Ma ,&nbsp;Bihui Zhu ,&nbsp;Li Qiu","doi":"10.1016/j.smaim.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Intramolecular bonds in small organic molecules, macromolecules, and organic-inorganic hybrids are broken or formed by ultrasound-activated mechanical force that can be applied with spatial and temporal precision for contactless external control of mechanochemical reactions. Ultrasound featuring non-invasiveness, high tissue penetration, and spatiotemporal controllability has shown great potential in controlling the activation of mechanochemical reactions such as chemical bond scission, natural enzyme activation, and catalytic radical generation for targeted drug or gene therapy. Here, we comprehensively summarize the latest research and future trends in ultrasound-activated mechanochemical reactions for smart biomedical applications. First, the mechanism of ultrasound-activated mechanochemical reactions will be outlined. Then, the types of mechanochemical reactions will be carefully discussed. After that, the representative biomedical applications have been summarized from a unique perspective. Finally, we systematically emphasize the current challenges and future outlooks to guide the rational design of ultrasound-activated drug release over conventional drug-loaded therapies. We believe that this review will substantially facilitate the progression and widespread utilization of ultrasound-activated mechanochemical reactions in biomedical applications.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183424000486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Intramolecular bonds in small organic molecules, macromolecules, and organic-inorganic hybrids are broken or formed by ultrasound-activated mechanical force that can be applied with spatial and temporal precision for contactless external control of mechanochemical reactions. Ultrasound featuring non-invasiveness, high tissue penetration, and spatiotemporal controllability has shown great potential in controlling the activation of mechanochemical reactions such as chemical bond scission, natural enzyme activation, and catalytic radical generation for targeted drug or gene therapy. Here, we comprehensively summarize the latest research and future trends in ultrasound-activated mechanochemical reactions for smart biomedical applications. First, the mechanism of ultrasound-activated mechanochemical reactions will be outlined. Then, the types of mechanochemical reactions will be carefully discussed. After that, the representative biomedical applications have been summarized from a unique perspective. Finally, we systematically emphasize the current challenges and future outlooks to guide the rational design of ultrasound-activated drug release over conventional drug-loaded therapies. We believe that this review will substantially facilitate the progression and widespread utilization of ultrasound-activated mechanochemical reactions in biomedical applications.

Abstract Image

用于可控生物医学应用的超声激活机械化学反应
小有机分子、大分子和有机-无机杂化物中的分子内键可通过超声波激活的机械力来断裂或形成,这种机械力可以在空间和时间上精确应用,从而实现对机械化学反应的非接触式外部控制。超声波具有非侵入性、高组织穿透性和时空可控性等特点,在控制化学键断裂、天然酶活化和催化自由基生成等机械化学反应的活化方面显示出巨大的潜力,可用于靶向药物或基因治疗。在此,我们全面总结了超声激活机械化学反应在智能生物医学应用方面的最新研究和未来趋势。首先,我们将概述超声激活机械化学反应的机理。然后,将仔细讨论机械化学反应的类型。然后,从独特的角度总结了具有代表性的生物医学应用。最后,我们系统地强调了当前的挑战和未来的展望,以指导合理设计超声激活药物释放而非传统药物负载疗法。我们相信,这篇综述将极大地推动超声激活机械化学反应在生物医学应用中的发展和广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信