Application of PCM for radiant heating of residential buildings in Canada towards achieving nearly zero energy buildings

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
{"title":"Application of PCM for radiant heating of residential buildings in Canada towards achieving nearly zero energy buildings","authors":"","doi":"10.1016/j.est.2024.114030","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this research was to investigate the effect of using a thermal energy storage system consisting of an active layer inside the walls, embedded in a layer of PCM, for a residential building in Toronto on the annual savings of heating energy. The energy of the active layer is supplied by a solar collector integrated with a thermal energy storage tank, and the PCM helps to regulate the temperature of the water flowing inside the active layer pipes during the times when its temperature starts falling. The modeling and simulation of the entire system were performed in TRNSYS software. A parametric study was also conducted, focusing on the impact of the piping configuration layout on its thermal performance for energy savings. The obtained results indicate that using only an active layer inside each wall, with a diameter of 3 cm and spacing of 11 cm, would result in a 65 % annual energy saving. Additionally, embedding these pipes in a layer of PCM with a thickness of 12 cm can lead to further annual energy savings of 27 %. This means that using this system for a building in Toronto can achieve annual heating energy savings of 92 %, equivalent to a reduction from 14,400 MJ to 1012 MJ throughout a year. Furthermore, a cost analysis of the proposed model over its 25-year lifespan was conducted, showing a payback period of 22 years.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24036168","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this research was to investigate the effect of using a thermal energy storage system consisting of an active layer inside the walls, embedded in a layer of PCM, for a residential building in Toronto on the annual savings of heating energy. The energy of the active layer is supplied by a solar collector integrated with a thermal energy storage tank, and the PCM helps to regulate the temperature of the water flowing inside the active layer pipes during the times when its temperature starts falling. The modeling and simulation of the entire system were performed in TRNSYS software. A parametric study was also conducted, focusing on the impact of the piping configuration layout on its thermal performance for energy savings. The obtained results indicate that using only an active layer inside each wall, with a diameter of 3 cm and spacing of 11 cm, would result in a 65 % annual energy saving. Additionally, embedding these pipes in a layer of PCM with a thickness of 12 cm can lead to further annual energy savings of 27 %. This means that using this system for a building in Toronto can achieve annual heating energy savings of 92 %, equivalent to a reduction from 14,400 MJ to 1012 MJ throughout a year. Furthermore, a cost analysis of the proposed model over its 25-year lifespan was conducted, showing a payback period of 22 years.
在加拿大住宅建筑中应用 PCM 辐射供暖,实现近零能耗建筑
本研究的目的是调查在多伦多的一栋住宅楼中使用热能储存系统对每年节省供暖能源的影响,该系统由墙壁内嵌一层 PCM 的活性层组成。活性层的能量由集成了热能储存罐的太阳能集热器提供,而 PCM 则有助于在水温开始下降时调节活性层管道内的水温。整个系统的建模和仿真是在 TRNSYS 软件中进行的。此外,还进行了参数研究,重点关注管道配置布局对其热性能的影响,以实现节能。研究结果表明,仅在每面墙内使用一个直径为 3 厘米、间距为 11 厘米的有源层,每年就可节约 65% 的能源。此外,将这些管道嵌入厚度为 12 厘米的 PCM 层中,每年还可节约 27% 的能源。这意味着,在多伦多的一栋建筑中使用该系统,每年可节约 92% 的供暖能源,相当于将全年的供暖能源从 14 400 兆焦耳减少到 1012 兆焦耳。此外,我们还对所建议的模型进行了 25 年使用寿命的成本分析,结果显示投资回收期为 22 年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信