Firas Ghanim , Fareeha Sami Khan , Ali Hasan Ali , Abdon Atangana
{"title":"Generalized Mittag-Leffler-confluent hypergeometric functions in fractional calculus integral operator with numerical solutions","authors":"Firas Ghanim , Fareeha Sami Khan , Ali Hasan Ali , Abdon Atangana","doi":"10.1016/j.jmaa.2024.128917","DOIUrl":null,"url":null,"abstract":"<div><div>The Mittag-Leffler and confluent hypergeometric functions were originally developed to extend the exponential function and its area of applications. This study aims to examine some operators involving generalized Mittag-Leffler-type functions in the kernels, employing the generalized Fox-Wright function in specific circumstances. Furthermore, we investigate some of the commonly utilized generalized fractional integral operators in fractional calculus. Moreover, a numerical technique is developed to solve fractional differential equations of both kinds, linear and nonlinear. The graphic results of the examples show how effective this method is at solving fractional differential equations. Lastly, various effects and implications of these results are thoroughly examined.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008394","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Mittag-Leffler and confluent hypergeometric functions were originally developed to extend the exponential function and its area of applications. This study aims to examine some operators involving generalized Mittag-Leffler-type functions in the kernels, employing the generalized Fox-Wright function in specific circumstances. Furthermore, we investigate some of the commonly utilized generalized fractional integral operators in fractional calculus. Moreover, a numerical technique is developed to solve fractional differential equations of both kinds, linear and nonlinear. The graphic results of the examples show how effective this method is at solving fractional differential equations. Lastly, various effects and implications of these results are thoroughly examined.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.