{"title":"Minkowski problems arise from sub-linear elliptic equations","authors":"Qiuyi Dai, Xing Yi","doi":"10.1016/j.jde.2024.09.023","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> be a bounded convex domain with boundary ∂Ω and <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be the unit outer vector normal to ∂Ω at <em>x</em>. Let <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> be the unit sphere in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Then, the Gauss mapping <span><math><mi>g</mi><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, defined almost everywhere with respect to surface measure <em>σ</em>, is given by <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. For <span><math><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></math></span>, it is well known that the following problem of sub-linear elliptic equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>φ</mi><mo>=</mo><msup><mrow><mi>φ</mi></mrow><mrow><mi>β</mi></mrow></msup><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>φ</mi><mo>></mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>φ</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi></mtd></mtr></mtable></mrow></math></span></span></span> has a unique solution. Moreover, it is easy to prove that each component of <span><math><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is well-defined almost everywhere on ∂Ω with respect to <em>σ</em>. Therefore, we can assign a measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> such that <span><math><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>σ</mi><mo>)</mo></math></span>. That is<span><span><span><math><munder><mo>∫</mo><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></munder><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow></munder><mi>f</mi><mo>(</mo><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>σ</mi></math></span></span></span> for every <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>. The so-called Minkowski problem associated with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> asks to find bounded convex domain Ω so that <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>=</mo><mi>μ</mi></math></span> for a given Borel measure <em>μ</em> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Our main results of this paper are the weak continuity of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> with respect to Hausdorff metric and the unique solvability of Minkowski problem associated with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span>. As a byproduct of our setting, an isoperimetric inequality is obtained.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006089","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a bounded convex domain with boundary ∂Ω and be the unit outer vector normal to ∂Ω at x. Let be the unit sphere in . Then, the Gauss mapping , defined almost everywhere with respect to surface measure σ, is given by . For , it is well known that the following problem of sub-linear elliptic equation has a unique solution. Moreover, it is easy to prove that each component of is well-defined almost everywhere on ∂Ω with respect to σ. Therefore, we can assign a measure on such that . That is for every . The so-called Minkowski problem associated with asks to find bounded convex domain Ω so that for a given Borel measure μ on . Our main results of this paper are the weak continuity of with respect to Hausdorff metric and the unique solvability of Minkowski problem associated with . As a byproduct of our setting, an isoperimetric inequality is obtained.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics