Global existence of strong solutions to the compressible magnetohydrodynamic equations with large initial data and vacuum in R2

IF 2.4 2区 数学 Q1 MATHEMATICS
Xue Wang, Xiaojing Xu
{"title":"Global existence of strong solutions to the compressible magnetohydrodynamic equations with large initial data and vacuum in R2","authors":"Xue Wang,&nbsp;Xiaojing Xu","doi":"10.1016/j.jde.2024.09.056","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns the Cauchy problem to the compressible magnetohydrodynamic equations in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with the constant state of density at far field being vacuum or nonvacuum. Under the conditions that the adiabatic constant <span><math><mi>γ</mi><mo>&gt;</mo><mn>1</mn></math></span>, the shear viscosity coefficient <em>μ</em> is a positive constant, and the bulk one <span><math><mi>λ</mi><mo>(</mo><mi>ρ</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> with <span><math><mi>β</mi><mo>&gt;</mo><mn>4</mn><mo>/</mo><mn>3</mn></math></span>, we establish the global existence and uniqueness of strong solutions. In particular, the initial data can be arbitrarily large and the density is allowed to vanish initially. These results generalize and improve previous ones by Huang-Li (2022) and Jiu-Wang-Xin (2018) for compressible Navier-Stokes equations. This paper introduces some key weighted estimates on <em>H</em> and presents some delicate analysis to exploit the decay properties of solutions due to the strong coupling and interplay interaction.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006417","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns the Cauchy problem to the compressible magnetohydrodynamic equations in R2 with the constant state of density at far field being vacuum or nonvacuum. Under the conditions that the adiabatic constant γ>1, the shear viscosity coefficient μ is a positive constant, and the bulk one λ(ρ)=ρβ with β>4/3, we establish the global existence and uniqueness of strong solutions. In particular, the initial data can be arbitrarily large and the density is allowed to vanish initially. These results generalize and improve previous ones by Huang-Li (2022) and Jiu-Wang-Xin (2018) for compressible Navier-Stokes equations. This paper introduces some key weighted estimates on H and presents some delicate analysis to exploit the decay properties of solutions due to the strong coupling and interplay interaction.
R2 中具有大初始数据和真空的可压缩磁流体动力学方程强解的全局存在性
本文涉及远场密度恒定状态为真空或非真空的 R2 中可压缩磁流体动力学方程的 Cauchy 问题。在绝热常数γ>1、剪切粘度系数μ为正常数、体积系数λ(ρ)=ρβ(β>4/3)的条件下,我们建立了强解的全局存在性和唯一性。特别是,初始数据可以任意大,而且允许密度在初始时消失。这些结果概括并改进了黄立(2022)和裘旺新(2018)之前针对可压缩纳维-斯托克斯方程的结果。本文介绍了对 H 的一些关键加权估计,并提出了一些精细分析,以利用强耦合和相互作用引起的解的衰减特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信