Bingchun Liu , Mingzhao Lai , Peng Zeng , Jiali Chen
{"title":"Air pollutant prediction based on a attention mechanism model of the Yangtze River Delta region in frequent heatwaves","authors":"Bingchun Liu , Mingzhao Lai , Peng Zeng , Jiali Chen","doi":"10.1016/j.atmosres.2024.107701","DOIUrl":null,"url":null,"abstract":"<div><div>Heatwaves pose significant threats to urban environments, affecting both ecological systems and public health, primarily through the exacerbation of air pollution. Accurate prediction of air pollutant concentrations during heatwave periods is crucial for authorities to develop timely prevention and control strategies. Thus, we developed the 1D-CNN-BiLSTM-attention model, specifically designed to account for the unique data characteristics associated with heatwave conditions. Our model leverages an attention mechanism to enhance its ability to learn and predict air pollutant behavior during heatwaves. Across six scenario-based experiments, the model demonstrated high predictive accuracy, achieving a MAPE of 2.93 %. The model integrates meteorological indicators such as temperature, humidity, wind speed, cloud cover, and precipitation, extending its predictive capability across a spatial range of 150 km. In experiments testing the model's applicability to three typical city types in the Yangtze River Delta region, the results confirmed its effectiveness in predicting air pollutants. These findings highlight the model's usefulness for studying air pollution during urban heatwave periods on a regional scale, demonstrating its robustness and reliability under varying weather conditions.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"311 ","pages":"Article 107701"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524004836","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heatwaves pose significant threats to urban environments, affecting both ecological systems and public health, primarily through the exacerbation of air pollution. Accurate prediction of air pollutant concentrations during heatwave periods is crucial for authorities to develop timely prevention and control strategies. Thus, we developed the 1D-CNN-BiLSTM-attention model, specifically designed to account for the unique data characteristics associated with heatwave conditions. Our model leverages an attention mechanism to enhance its ability to learn and predict air pollutant behavior during heatwaves. Across six scenario-based experiments, the model demonstrated high predictive accuracy, achieving a MAPE of 2.93 %. The model integrates meteorological indicators such as temperature, humidity, wind speed, cloud cover, and precipitation, extending its predictive capability across a spatial range of 150 km. In experiments testing the model's applicability to three typical city types in the Yangtze River Delta region, the results confirmed its effectiveness in predicting air pollutants. These findings highlight the model's usefulness for studying air pollution during urban heatwave periods on a regional scale, demonstrating its robustness and reliability under varying weather conditions.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.