The effects of local delivery of laurus nobilis extract and adipose derived stem cells via electrospun gelatin scaffold on spinal cord injury inflammatoradscy response and its regeneration
Chong Zhang , Jin Zhang , Daotao Xie , Gang Guo , Saman Jalili
{"title":"The effects of local delivery of laurus nobilis extract and adipose derived stem cells via electrospun gelatin scaffold on spinal cord injury inflammatoradscy response and its regeneration","authors":"Chong Zhang , Jin Zhang , Daotao Xie , Gang Guo , Saman Jalili","doi":"10.1016/j.reth.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>When subjected to injury, the spinal cord's inherent complexity poses significant challenges for effective healing. In this study, gelatin nanofibers loaded with Laurus nobilis extract were developed to serve as a delivery system for adipose-derived stem cells (ADSCs), aiming to explore its potential immunomodulatory effects in a rat model of spinal cord injury. Through a series of in vitro assessments including scanning electron microscopy imaging, cell viability, anti-inflammatory, cell adhesion, biodegradation, and hemocompatibility assays, the characteristics of the delivery system were thoroughly evaluated. The in vitro studies revealed both the biocompatibility of the scaffolds and their notable anti-inflammatory properties, laying the groundwork for further investigation. Subsequent in vivo experiments demonstrated that rats treated with Laurus nobilis extract and ADSCs loaded scaffolds exhibited heightened functional recovery (BBB score of 14.66 ± 1.52 % and hot plate latency time of 8.33 0.26 s) and histological restoration at the 8-week mark post-injury. Notably, ELISA assay results revealed a significant reduction in tissue expression levels of key pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, suggesting a pronounced immunomodulatory effect of the Laurus nobilis extract-loaded scaffolds. The findings underscore the potential of this novel delivery system to improve clinical outcomes in spinal cord injury by enhancing functional recovery and reducing inflammation. This approach could lead to the development of new, natural-based therapeutic strategies for spinal cord injury, with potential extensions to other inflammatory or degenerative conditions. Future research should focus on optimizing this strategy in larger animal models and eventually translating these findings into human clinical trials.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 879-888"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320424001688","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
When subjected to injury, the spinal cord's inherent complexity poses significant challenges for effective healing. In this study, gelatin nanofibers loaded with Laurus nobilis extract were developed to serve as a delivery system for adipose-derived stem cells (ADSCs), aiming to explore its potential immunomodulatory effects in a rat model of spinal cord injury. Through a series of in vitro assessments including scanning electron microscopy imaging, cell viability, anti-inflammatory, cell adhesion, biodegradation, and hemocompatibility assays, the characteristics of the delivery system were thoroughly evaluated. The in vitro studies revealed both the biocompatibility of the scaffolds and their notable anti-inflammatory properties, laying the groundwork for further investigation. Subsequent in vivo experiments demonstrated that rats treated with Laurus nobilis extract and ADSCs loaded scaffolds exhibited heightened functional recovery (BBB score of 14.66 ± 1.52 % and hot plate latency time of 8.33 0.26 s) and histological restoration at the 8-week mark post-injury. Notably, ELISA assay results revealed a significant reduction in tissue expression levels of key pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, suggesting a pronounced immunomodulatory effect of the Laurus nobilis extract-loaded scaffolds. The findings underscore the potential of this novel delivery system to improve clinical outcomes in spinal cord injury by enhancing functional recovery and reducing inflammation. This approach could lead to the development of new, natural-based therapeutic strategies for spinal cord injury, with potential extensions to other inflammatory or degenerative conditions. Future research should focus on optimizing this strategy in larger animal models and eventually translating these findings into human clinical trials.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.