Numerical and artificial neural network inspired study on step-like-plenum battery thermal management system

Q1 Chemical Engineering
{"title":"Numerical and artificial neural network inspired study on step-like-plenum battery thermal management system","authors":"","doi":"10.1016/j.ijft.2024.100897","DOIUrl":null,"url":null,"abstract":"<div><div>This study leverage numerical simulation (NS) and artificial neural network (ANN) capabilities to carry out additional investigations on step-like plenum battery thermal management system (BTMS). Different cooling strategies have been developed over the years in BTMSs’ design. Yet, air-cooling strategies still remains relevant, especially in battery-powered aircrafts, where light-weight is important and air is the preferred cooling fluid. Hence, additional study become necessary especially on the step-like plenum design to provide more insight on the performance of the design by considering several number of step, varied air inlet temperature and velocity. Computational fluid dynamics (CFD) approach was employed to obtained results for different number of step; <em>N<sub>s</sub></em> = 1,  3,  4,  7,  9,  15 and 19, varied air inlet temperature; <em>T<sub>i</sub></em> = 278,  298 and 318 <em>K</em>, and varied air inlet velocity; <em>V<sub>i</sub></em> = 3,  3.5,  4,  5 and 6 <em>m</em>/<em>s</em>. Artificial Neural Network (ANN) approach was then employed to predict the BTMSs’ performance for additional values of <em>T<sub>i</sub></em> and <em>V<sub>i</sub></em>. Minimum temperature (<em>T<sub>min</sub></em>), maximum temperature (<em>T<sub>max</sub></em>), maximum temperature difference (Δ<em>T<sub>max</sub></em>) and pressure drop (Δ<em>P</em>) were computed. By comparing the CFD results with the result predicted by the ANN, the percentage difference, for the entire dataset were 0.01 %, 0.005 %, 1 % and 0.14 % for <em>T<sub>max</sub>, T<sub>min</sub></em> Δ<em>T<sub>max</sub></em> and Δ<em>P</em>, respectively. Based on the optimum design parameters predicted using ANN, for <em>T<sub>max</sub></em> = 299.24 comprises <em>N<sub>s</sub></em> = 4, <em>V<sub>i</sub></em> = 6 <em>m</em>/<em>s</em> and <em>T<sub>i</sub></em> = 278 <em>K</em>, while for Δ<em>P</em>, comprises <em>N<sub>s</sub></em> = 1, <em>V<sub>i</sub></em> = 3 <em>m</em>/<em>s</em> and <em>T<sub>i</sub></em> = 318 <em>K</em>.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724003379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study leverage numerical simulation (NS) and artificial neural network (ANN) capabilities to carry out additional investigations on step-like plenum battery thermal management system (BTMS). Different cooling strategies have been developed over the years in BTMSs’ design. Yet, air-cooling strategies still remains relevant, especially in battery-powered aircrafts, where light-weight is important and air is the preferred cooling fluid. Hence, additional study become necessary especially on the step-like plenum design to provide more insight on the performance of the design by considering several number of step, varied air inlet temperature and velocity. Computational fluid dynamics (CFD) approach was employed to obtained results for different number of step; Ns = 1,  3,  4,  7,  9,  15 and 19, varied air inlet temperature; Ti = 278,  298 and 318 K, and varied air inlet velocity; Vi = 3,  3.5,  4,  5 and 6 m/s. Artificial Neural Network (ANN) approach was then employed to predict the BTMSs’ performance for additional values of Ti and Vi. Minimum temperature (Tmin), maximum temperature (Tmax), maximum temperature difference (ΔTmax) and pressure drop (ΔP) were computed. By comparing the CFD results with the result predicted by the ANN, the percentage difference, for the entire dataset were 0.01 %, 0.005 %, 1 % and 0.14 % for Tmax, Tmin ΔTmax and ΔP, respectively. Based on the optimum design parameters predicted using ANN, for Tmax = 299.24 comprises Ns = 4, Vi = 6 m/s and Ti = 278 K, while for ΔP, comprises Ns = 1, Vi = 3 m/s and Ti = 318 K.
受数值和人工神经网络启发的阶梯式电池热管理系统研究
本研究利用数值模拟(NS)和人工神经网络(ANN)的功能,对阶梯式风箱电池热管理系统(BTMS)进行了进一步研究。多年来,在 BTMS 的设计中开发了不同的冷却策略。然而,空气冷却策略仍然适用,特别是在电池驱动的飞机上,因为在这种飞机上,轻量化非常重要,而空气是首选的冷却流体。因此,有必要进行更多的研究,尤其是对阶梯式风箱设计进行研究,以便通过考虑多个阶梯、不同的进气温度和速度,对该设计的性能有更深入的了解。我们采用了计算流体动力学(CFD)方法,以获得不同台阶数(Ns = 1、3、4、7、9、15 和 19)、不同进气温度(Ti = 278、298 和 318 K)和不同进气速度(Vi = 3、3.5、4、5 和 6 m/s)的结果。然后,采用人工神经网络(ANN)方法来预测 BTMS 在 Ti 和 Vi 附加值下的性能。计算了最低温度 (Tmin)、最高温度 (Tmax)、最大温差 (ΔTmax) 和压降 (ΔP)。通过比较 CFD 结果和 ANN 预测结果,在整个数据集中,Tmax、Tmin ΔTmax 和 ΔP 的百分比差异分别为 0.01%、0.005%、1% 和 0.14%。根据 ANN 预测的最佳设计参数,Tmax = 299.24 包括 Ns = 4、Vi = 6 m/s 和 Ti = 278 K,而 ΔP 包括 Ns = 1、Vi = 3 m/s 和 Ti = 318 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信