Xiaoqin Li , Jian Xiang , Lu Qiu , Xiaohan Chen , Yinkun Zhao , Yujue Wang , Qu Yue , Taotao Gao , Wenlong Liu , Dan Xiao , Zhaoyu Jin , Panpan Li
{"title":"Unlocking the stable interface in aqueous zinc-ion battery with multifunctional xylose-based electrolyte additives","authors":"Xiaoqin Li , Jian Xiang , Lu Qiu , Xiaohan Chen , Yinkun Zhao , Yujue Wang , Qu Yue , Taotao Gao , Wenlong Liu , Dan Xiao , Zhaoyu Jin , Panpan Li","doi":"10.1016/j.jechem.2024.09.030","DOIUrl":null,"url":null,"abstract":"<div><div>The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries (AZIBs). These challenges arise from the inherent conflict between mass transfer and electrochemical kinetics. In this study, we propose the use of a multifunctional electrolyte additive based on the xylose (Xylo) molecule to address these issues by modulating the solvation structure and electrode/electrolyte interface, thereby stabilizing the Zn anode. The introduction of the additive alters the solvation structure, creating steric hindrance that impedes charge transfer and then reduces electrochemical kinetics. Furthermore, in-situ analyses demonstrate that the reconstructed electrode/electrolyte interface facilitates stable and rapid Zn<sup>2+</sup> ion migration and suppresses corrosion and hydrogen evolution reactions. As a result, symmetric cells incorporating the Xylo additive exhibit significantly enhanced reversibility during the Zn plating/stripping process, with an impressively long lifespan of up to 1986 h, compared to cells using pure ZnSO<sub>4</sub> electrolyte. When combined with a polyaniline cathode, the full cells demonstrate improved capacity and long-term cyclic stability. This work offers an effective direction for improving the stability of Zn anode via electrolyte design, as well as high-performance AZIBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"100 ","pages":"Pages 770-778"},"PeriodicalIF":13.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006545","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries (AZIBs). These challenges arise from the inherent conflict between mass transfer and electrochemical kinetics. In this study, we propose the use of a multifunctional electrolyte additive based on the xylose (Xylo) molecule to address these issues by modulating the solvation structure and electrode/electrolyte interface, thereby stabilizing the Zn anode. The introduction of the additive alters the solvation structure, creating steric hindrance that impedes charge transfer and then reduces electrochemical kinetics. Furthermore, in-situ analyses demonstrate that the reconstructed electrode/electrolyte interface facilitates stable and rapid Zn2+ ion migration and suppresses corrosion and hydrogen evolution reactions. As a result, symmetric cells incorporating the Xylo additive exhibit significantly enhanced reversibility during the Zn plating/stripping process, with an impressively long lifespan of up to 1986 h, compared to cells using pure ZnSO4 electrolyte. When combined with a polyaniline cathode, the full cells demonstrate improved capacity and long-term cyclic stability. This work offers an effective direction for improving the stability of Zn anode via electrolyte design, as well as high-performance AZIBs.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy