Predicting OCD severity from religiosity and personality: A machine learning and neural network approach

Brian A. Zaboski , Alixandra Wilens , Joseph P.H. McNamara , Gregory N. Muller
{"title":"Predicting OCD severity from religiosity and personality: A machine learning and neural network approach","authors":"Brian A. Zaboski ,&nbsp;Alixandra Wilens ,&nbsp;Joseph P.H. McNamara ,&nbsp;Gregory N. Muller","doi":"10.1016/j.xjmad.2024.100089","DOIUrl":null,"url":null,"abstract":"<div><div>Obsessive-compulsive disorder (OCD) affects a significant portion of the United States population. The present study investigated the complex relationships among OCD severity, personality traits, religiosity, and spirituality with a dataset of 229 participants. We applied advanced machine and deep learning techniques to identify key predictors of OCD severity, uncovering nuanced relationships and unexpected findings. Notably, item-level features were more influential than aggregate scores, challenging traditional analytical approaches. Moreover, a neural network model, despite not surpassing a linear regression in predictive accuracy, provided a more comprehensive understanding of OCD’s heterogeneity and of the nonlinear relationships between our variables. The inclusion of demographic factors provided further explanatory power for predicting OCD severity, emphasizing the multifaceted nature of the disorder. Our results show that machine learning models can nearly match traditional linear models in predictive power while retaining nonlinear relationships essential to understanding OCD. Our study advocates for the adoption of sophisticated predictive models in examining complex psychological phenomena, encouraging a reevaluation of conventional analytical approaches when prediction is central to research questions.</div></div>","PeriodicalId":73841,"journal":{"name":"Journal of mood and anxiety disorders","volume":"8 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of mood and anxiety disorders","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950004424000439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Obsessive-compulsive disorder (OCD) affects a significant portion of the United States population. The present study investigated the complex relationships among OCD severity, personality traits, religiosity, and spirituality with a dataset of 229 participants. We applied advanced machine and deep learning techniques to identify key predictors of OCD severity, uncovering nuanced relationships and unexpected findings. Notably, item-level features were more influential than aggregate scores, challenging traditional analytical approaches. Moreover, a neural network model, despite not surpassing a linear regression in predictive accuracy, provided a more comprehensive understanding of OCD’s heterogeneity and of the nonlinear relationships between our variables. The inclusion of demographic factors provided further explanatory power for predicting OCD severity, emphasizing the multifaceted nature of the disorder. Our results show that machine learning models can nearly match traditional linear models in predictive power while retaining nonlinear relationships essential to understanding OCD. Our study advocates for the adoption of sophisticated predictive models in examining complex psychological phenomena, encouraging a reevaluation of conventional analytical approaches when prediction is central to research questions.
从宗教信仰和性格预测强迫症的严重程度:机器学习和神经网络方法
强迫症(OCD)影响着美国相当一部分人口。本研究利用 229 名参与者的数据集调查了强迫症严重程度、人格特质、宗教信仰和灵性之间的复杂关系。我们应用先进的机器学习和深度学习技术来识别强迫症严重程度的关键预测因素,发现了细微的关系和意想不到的发现。值得注意的是,项目级特征比总分更具影响力,这对传统的分析方法提出了挑战。此外,神经网络模型尽管在预测准确性上没有超过线性回归,但却能更全面地了解强迫症的异质性以及变量之间的非线性关系。人口统计学因素的加入为预测强迫症的严重程度提供了进一步的解释力,强调了强迫症的多面性。我们的研究结果表明,机器学习模型的预测能力几乎可以与传统的线性模型相媲美,同时还保留了对理解强迫症至关重要的非线性关系。我们的研究提倡在研究复杂的心理现象时采用复杂的预测模型,鼓励在预测是研究问题的核心时重新评估传统的分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of mood and anxiety disorders
Journal of mood and anxiety disorders Applied Psychology, Experimental and Cognitive Psychology, Clinical Psychology, Psychiatry and Mental Health, Psychology (General), Behavioral Neuroscience
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信