On the proper interval completion problem within some chordal subclasses

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"On the proper interval completion problem within some chordal subclasses","authors":"","doi":"10.1016/j.disc.2024.114274","DOIUrl":null,"url":null,"abstract":"<div><div>Given a property (graph class) Π, a graph <em>G</em>, and an integer <em>k</em>, the Π<em>-completion</em> problem consists of deciding whether we can turn <em>G</em> into a graph with the property Π by adding at most <em>k</em> edges to <em>G</em>. The Π-completion problem is known to be NP-hard for general graphs when Π is the property of being a proper interval graph (PIG). In this work, we study the PIG-completion problem within different subclasses of chordal graphs. We show that the problem remains NP-complete even when restricted to split graphs. We then turn our attention to positive results and present polynomial time algorithms to solve the PIG-completion problem when the input is restricted to caterpillar and threshold graphs. We also present an efficient algorithm for the minimum co-bipartite-completion for quasi-threshold graphs, which provides a lower bound for the PIG-completion problem within this graph class.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004059","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a property (graph class) Π, a graph G, and an integer k, the Π-completion problem consists of deciding whether we can turn G into a graph with the property Π by adding at most k edges to G. The Π-completion problem is known to be NP-hard for general graphs when Π is the property of being a proper interval graph (PIG). In this work, we study the PIG-completion problem within different subclasses of chordal graphs. We show that the problem remains NP-complete even when restricted to split graphs. We then turn our attention to positive results and present polynomial time algorithms to solve the PIG-completion problem when the input is restricted to caterpillar and threshold graphs. We also present an efficient algorithm for the minimum co-bipartite-completion for quasi-threshold graphs, which provides a lower bound for the PIG-completion problem within this graph class.
关于某些和弦子类中的适当音程完成问题
给定一个属性(图类)Π、一个图 G 和一个整数 k,Π-补全问题包括判断我们是否能通过在 G 上添加最多 k 条边将 G 变成一个具有属性 Π 的图。众所周知,当 Π 是适当区间图 (PIG) 的属性时,Π-补全问题对于一般图来说是 NP-困难的。在这项工作中,我们研究了弦图不同子类中的 PIG-补全问题。我们证明,即使仅限于分裂图,该问题仍然是 NP-完全的。然后,我们将注意力转向正面结果,并提出了多项式时间算法,用于解决输入仅限于毛毛虫图和阈值图时的 PIG-补全问题。我们还提出了准阈值图的最小共边完成的高效算法,为该图类中的 PIG 完成问题提供了一个下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信