Strategies for overcoming the lung surfactant barrier and achieving success in antimicrobial photodynamic therapy

IF 3.261
Isabelle Almeida de Lima , Lorraine Gabriele Fiuza , Johan Sebastián Díaz Tovar , Dianeth Sara Lima Bejar , Ana Julia Barbosa Tomé , Michelle Barreto Requena , Layla Pires , Gang Zheng , Natalia Mayumi Inada , Cristina Kurachi , Vanderlei Salvador Bagnato
{"title":"Strategies for overcoming the lung surfactant barrier and achieving success in antimicrobial photodynamic therapy","authors":"Isabelle Almeida de Lima ,&nbsp;Lorraine Gabriele Fiuza ,&nbsp;Johan Sebastián Díaz Tovar ,&nbsp;Dianeth Sara Lima Bejar ,&nbsp;Ana Julia Barbosa Tomé ,&nbsp;Michelle Barreto Requena ,&nbsp;Layla Pires ,&nbsp;Gang Zheng ,&nbsp;Natalia Mayumi Inada ,&nbsp;Cristina Kurachi ,&nbsp;Vanderlei Salvador Bagnato","doi":"10.1016/j.jpap.2024.100252","DOIUrl":null,"url":null,"abstract":"<div><div>The impressive increase in antimicrobial resistance has required the development of alternative treatments that act on multiple non-specific molecular targets and are effective against a broad range of microorganisms. Antimicrobial Photodynamic Therapy (aPDT) is based on microbial inactivation from oxidative stress and represents an important tool for inactivating microorganisms with low risk of resistance selection. Therefore, our research group has been devoted to demonstrating its effectiveness against pathogens that cause pneumonia, one of the most lethal infections worldwide. Previous studies reported the efficiency and safety of an <em>in vitro</em> photoinactivation protocol for <em>Streptococcus pneumoniae</em> and the delivery of infrared light (external illumination) and photosensitizer (PS) in an animal model. However, the <em>in vivo</em> inactivation of microorganisms still poses challenges due to the presence of lung surfactant (LS), which traps PSs, preventing them from reaching the microbial target. This study investigated different approaches such as use of emulsifiers, perfluorocarbon, oxygen nanobubbles, and copolymer towards overcoming LS and optimizing aPDT response. The most promising strategy consisted in combining indocyanine green (ICG) with Gantrez<sup>TM</sup> AN-139 - a Polyvinyl Methyl Ether/Maleic Anhydride copolymer (PVM/MA) – showing high microbial inactivation and safety for human lung epithelial (A549) and fibroblast (MRC-9) cell lines. The <em>in vitro</em> experiments provided an alternative to overcome the limited PS distribution through LS and will serve as the basis for <em>in vivo</em> studies.</div></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"24 ","pages":"Article 100252"},"PeriodicalIF":3.2610,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666469024000277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The impressive increase in antimicrobial resistance has required the development of alternative treatments that act on multiple non-specific molecular targets and are effective against a broad range of microorganisms. Antimicrobial Photodynamic Therapy (aPDT) is based on microbial inactivation from oxidative stress and represents an important tool for inactivating microorganisms with low risk of resistance selection. Therefore, our research group has been devoted to demonstrating its effectiveness against pathogens that cause pneumonia, one of the most lethal infections worldwide. Previous studies reported the efficiency and safety of an in vitro photoinactivation protocol for Streptococcus pneumoniae and the delivery of infrared light (external illumination) and photosensitizer (PS) in an animal model. However, the in vivo inactivation of microorganisms still poses challenges due to the presence of lung surfactant (LS), which traps PSs, preventing them from reaching the microbial target. This study investigated different approaches such as use of emulsifiers, perfluorocarbon, oxygen nanobubbles, and copolymer towards overcoming LS and optimizing aPDT response. The most promising strategy consisted in combining indocyanine green (ICG) with GantrezTM AN-139 - a Polyvinyl Methyl Ether/Maleic Anhydride copolymer (PVM/MA) – showing high microbial inactivation and safety for human lung epithelial (A549) and fibroblast (MRC-9) cell lines. The in vitro experiments provided an alternative to overcome the limited PS distribution through LS and will serve as the basis for in vivo studies.
克服肺表面活性物质障碍并成功进行抗菌光动力疗法的策略
抗菌药耐药性的显著增加要求开发能作用于多个非特异性分子靶点、对多种微生物有效的替代治疗方法。抗菌光动力疗法(aPDT)基于氧化应激对微生物的灭活作用,是一种灭活微生物的重要工具,而且产生耐药性的风险很低。因此,我们的研究小组一直致力于证明它对肺炎病原体的有效性,肺炎是全球最致命的感染之一。之前的研究报告显示,体外光灭活肺炎链球菌的方案以及在动物模型中输送红外光(外部照明)和光敏剂(PS)的方法既有效又安全。然而,由于肺表面活性物质(LS)的存在会捕获光敏剂,使其无法到达微生物目标,因此在体内灭活微生物仍面临挑战。本研究调查了不同的方法,如使用乳化剂、全氟化碳、氧纳米气泡和共聚物,以克服肺表面活性剂并优化 aPDT 反应。最有前景的策略是将吲哚菁绿(ICG)与 GantrezTM AN-139 结合使用,GantrezTM AN-139 是一种聚乙烯醇甲基醚/马来酸酐共聚物(PVM/MA),对人肺部上皮细胞(A549)和成纤维细胞(MRC-9)具有很高的微生物灭活能力和安全性。体外实验为克服 PS 通过 LS 的有限分布提供了一种替代方法,并将作为体内研究的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信