Elssa George , Jomon Joy , Poornima Vijayan P , Henri Vahabi , Soney C. George , Saithalavi Anas
{"title":"Effect of filler loading on the frictional, thermal and mechanical properties of ABS/boron nitride (h-BN) nanocomposites","authors":"Elssa George , Jomon Joy , Poornima Vijayan P , Henri Vahabi , Soney C. George , Saithalavi Anas","doi":"10.1016/j.nanoso.2024.101372","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of hexagonal boron nitride (h-BN) nanoparticles in acrylonitrile butadiene styrene (ABS) polymer matrix is investigated. ABS/h-BN nanocomposites were prepared with h-BN content ranging from 0.5 to 5 wt% and their frictional, thermal and mechanical properties were evaluated. XRD analysis showed that the 'd' spacing in h-BN stacks increased in the ABS nanocomposite due to the interpenetration of ABS polymer chains. The tensile properties and thermal stability of ABS matrix showed better improvement with 0.5 wt% addition of h-BN nanoparticles. The tensile fracture mechanism in ABS/h-BN nanocomposites was predicted using tensile fracture surface analysis. Coats-Redfern approach was applied to support the thermal stability analysis results. Significant enhancement (28 %) in frictional property of ABS was observed in the nanocomposite with h-BN. Wettability and flame retardancy of the ABS/h-BN nanocomposites were also investigated.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101372"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of hexagonal boron nitride (h-BN) nanoparticles in acrylonitrile butadiene styrene (ABS) polymer matrix is investigated. ABS/h-BN nanocomposites were prepared with h-BN content ranging from 0.5 to 5 wt% and their frictional, thermal and mechanical properties were evaluated. XRD analysis showed that the 'd' spacing in h-BN stacks increased in the ABS nanocomposite due to the interpenetration of ABS polymer chains. The tensile properties and thermal stability of ABS matrix showed better improvement with 0.5 wt% addition of h-BN nanoparticles. The tensile fracture mechanism in ABS/h-BN nanocomposites was predicted using tensile fracture surface analysis. Coats-Redfern approach was applied to support the thermal stability analysis results. Significant enhancement (28 %) in frictional property of ABS was observed in the nanocomposite with h-BN. Wettability and flame retardancy of the ABS/h-BN nanocomposites were also investigated.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .