Dongliang Han , Mingqi Wang , Tiantian Zhang , Xuedan Zhang , Jing Liu , Yufei Tan
{"title":"Spatial heterogeneity of meteorological elements and PM2.5: Joint environmental-meteorological effects on PM2.5 in a Cold City","authors":"Dongliang Han , Mingqi Wang , Tiantian Zhang , Xuedan Zhang , Jing Liu , Yufei Tan","doi":"10.1016/j.uclim.2024.102160","DOIUrl":null,"url":null,"abstract":"<div><div>To quantify the differences in winter thermal environment and air quality and to clarify the main factors influencing PM2.5 concentrations in cold regions, providing references for regional heating supply design and urban planning. In this study, pedestrian-level thermal environmental parameters and PM2.5 concentration were measured and compared across different urban functional zones (UFZs). Additionally, multiple linear regression (MLR), principal component analysis (PCA), and principal component regression (PCR) were employed to analyze the main controlling factors of PM2.5 and air temperature. The findings reveal that regional microclimate temperatures differ significantly, with variations of 2.68–4.31 °C compared to typical MET data. Notably, the Sky View Factor (SVF) emerged as the dominant influence on temperature variations, while PM2.5 concentrations were primarily driven by a combination of ENV (BD, SVF, GnPR) and MET factors (Ta, RH, TSr). The PCR model demonstrated superior predictive accuracy for PM2.5 concentrations (Adjusted R-squared = 0.78) compared to the MLR model (Adjusted R-squared = 0.63). This study not only deepens the understanding of ENV-MET interactions in cold regions, but also provides important recommendations for optimizing urban planning and heating strategies to improve air quality and thermal comfort.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095524003572","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To quantify the differences in winter thermal environment and air quality and to clarify the main factors influencing PM2.5 concentrations in cold regions, providing references for regional heating supply design and urban planning. In this study, pedestrian-level thermal environmental parameters and PM2.5 concentration were measured and compared across different urban functional zones (UFZs). Additionally, multiple linear regression (MLR), principal component analysis (PCA), and principal component regression (PCR) were employed to analyze the main controlling factors of PM2.5 and air temperature. The findings reveal that regional microclimate temperatures differ significantly, with variations of 2.68–4.31 °C compared to typical MET data. Notably, the Sky View Factor (SVF) emerged as the dominant influence on temperature variations, while PM2.5 concentrations were primarily driven by a combination of ENV (BD, SVF, GnPR) and MET factors (Ta, RH, TSr). The PCR model demonstrated superior predictive accuracy for PM2.5 concentrations (Adjusted R-squared = 0.78) compared to the MLR model (Adjusted R-squared = 0.63). This study not only deepens the understanding of ENV-MET interactions in cold regions, but also provides important recommendations for optimizing urban planning and heating strategies to improve air quality and thermal comfort.
期刊介绍:
Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following:
Urban meteorology and climate[...]
Urban environmental pollution[...]
Adaptation to global change[...]
Urban economic and social issues[...]
Research Approaches[...]