Miao Zhou , Xiongbin Luo , Hang Li , Shan Guo , Zhuang Tong , Xiaotao Zhou , Xu Li , Zhaohui Hou , Shuquan Liang , Guozhao Fang
{"title":"Interfacial Zn2+-solvation regulator towards reversible and stable Zn anode","authors":"Miao Zhou , Xiongbin Luo , Hang Li , Shan Guo , Zhuang Tong , Xiaotao Zhou , Xu Li , Zhaohui Hou , Shuquan Liang , Guozhao Fang","doi":"10.1016/j.jechem.2024.08.061","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc-ion batteries (AZIBs) are fundamentally challenged by the instability of the electrode/electrolyte interface, predominantly due to irreversible zinc (Zn) deposition and hydrogen evolution. Particularly, the intricate mechanisms behind the electrochemical discrepancies induced by interfacial Zn<sup>2+</sup>-solvation and deposition behavior demand comprehensive investigation. Organic molecules endowed with special functional groups (such as hydroxyl, carboxyl, etc.) have the potential to significantly optimize the solvation structure of Zn<sup>2+</sup> and regulate the interfacial electric double layer (EDL). By increasing nucleation overpotential and decreasing interfacial free energy, these functional groups facilitate a lower critical nucleation radius, thereby forming an asymptotic nucleation model to promote uniform Zn deposition. Herein, this study presents a pioneering approach by introducing trace amounts of n-butanol as solvation regulators to engineer the homogenized Zn (H-Zn) anode with a uniform and dense structure. The interfacial reaction and structure evolution are explored by in/ex-situ experimental techniques, indicating that the H-Zn anode exhibits dendrite-free growth, no by-products, and weak hydrogen evolution, in sharp contrast to the bare Zn. Consequently, the H-Zn anode achieves a remarkable Zn utilization rate of approximately 20% and simultaneously sustains a prolonged cycle life exceeding 500 h. Moreover, the H-Zn//NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> (NVO) full battery showcases exceptional cycle stability, retaining 95.04% capacity retention after 400 cycles at a large current density of 5 A g<sup>−1</sup>. This study enlightens solvation-regulated additives to develop Zn anode with superior utilization efficiency and extended operational lifespan.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"100 ","pages":"Pages 684-692"},"PeriodicalIF":13.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562400617X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc-ion batteries (AZIBs) are fundamentally challenged by the instability of the electrode/electrolyte interface, predominantly due to irreversible zinc (Zn) deposition and hydrogen evolution. Particularly, the intricate mechanisms behind the electrochemical discrepancies induced by interfacial Zn2+-solvation and deposition behavior demand comprehensive investigation. Organic molecules endowed with special functional groups (such as hydroxyl, carboxyl, etc.) have the potential to significantly optimize the solvation structure of Zn2+ and regulate the interfacial electric double layer (EDL). By increasing nucleation overpotential and decreasing interfacial free energy, these functional groups facilitate a lower critical nucleation radius, thereby forming an asymptotic nucleation model to promote uniform Zn deposition. Herein, this study presents a pioneering approach by introducing trace amounts of n-butanol as solvation regulators to engineer the homogenized Zn (H-Zn) anode with a uniform and dense structure. The interfacial reaction and structure evolution are explored by in/ex-situ experimental techniques, indicating that the H-Zn anode exhibits dendrite-free growth, no by-products, and weak hydrogen evolution, in sharp contrast to the bare Zn. Consequently, the H-Zn anode achieves a remarkable Zn utilization rate of approximately 20% and simultaneously sustains a prolonged cycle life exceeding 500 h. Moreover, the H-Zn//NH4V4O10 (NVO) full battery showcases exceptional cycle stability, retaining 95.04% capacity retention after 400 cycles at a large current density of 5 A g−1. This study enlightens solvation-regulated additives to develop Zn anode with superior utilization efficiency and extended operational lifespan.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy