{"title":"An 11-bit low power column-parallel single slope ADC with comparator toggle prediction technique for CMOS image sensor","authors":"Xiaolin Shi , Shaomeng Li , Kaiming Nie","doi":"10.1016/j.mejo.2024.106427","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an 11-bit low power column-parallel SS ADC with DCDS for CMOS image sensors. The proposed SS ADC reduces the power consumption in three ways. Firstly, using a combination of coarse and fine quantization can reduce power consumption of counter. Secondly, changing the operation state can remove the bit width inverter. Thirdly, the comparator power is reduced by making each column of comparators switch off after the end of the comparison function. The proposed ADC is fabricated in a 110 nm 1P4M CMOS technology and has a DNL of +0.64/−0.54 LSB and an INL of +0.04/−6.7 LSB at a sampling frequency of 29.9 kS/s. The single column SS ADC has the power consumption ranging from 39.6 μW to 74.87 μW. Compared with the conventional SS ADC, the minimum and the maximum reduction of the power consumption are 20.1 % and 43.8 %, respectively. The average power saving is 34.5 %.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124001310","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an 11-bit low power column-parallel SS ADC with DCDS for CMOS image sensors. The proposed SS ADC reduces the power consumption in three ways. Firstly, using a combination of coarse and fine quantization can reduce power consumption of counter. Secondly, changing the operation state can remove the bit width inverter. Thirdly, the comparator power is reduced by making each column of comparators switch off after the end of the comparison function. The proposed ADC is fabricated in a 110 nm 1P4M CMOS technology and has a DNL of +0.64/−0.54 LSB and an INL of +0.04/−6.7 LSB at a sampling frequency of 29.9 kS/s. The single column SS ADC has the power consumption ranging from 39.6 μW to 74.87 μW. Compared with the conventional SS ADC, the minimum and the maximum reduction of the power consumption are 20.1 % and 43.8 %, respectively. The average power saving is 34.5 %.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.