fatemeh doraghi, Parsa Baghershahi, Farzad Gilaninezhad, Negar Mehdi zadeh Darban, Navid Dastyafteh, Milad Noori, Mohammad Mahdavi
{"title":"Silver and Copper‐Catalyzed Cycloaddition Reactions of Isocyanide Esters","authors":"fatemeh doraghi, Parsa Baghershahi, Farzad Gilaninezhad, Negar Mehdi zadeh Darban, Navid Dastyafteh, Milad Noori, Mohammad Mahdavi","doi":"10.1002/adsc.202400994","DOIUrl":null,"url":null,"abstract":"Owing to multiple reactive sites, such as an acidic α‐carbon and an isocyano group, isocyanide esters can successfully participate in the synthesis of various five‐ and six‐membered N‐heterocycles through the cycloaddition reactions under metal‐catalyzed systems. Considering the unique and versatile functionality of this synthon, in this review, we have highlighted silver and copper‐catalyzed cycloadditions of isocyanide esters over the last decade.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"16 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202400994","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to multiple reactive sites, such as an acidic α‐carbon and an isocyano group, isocyanide esters can successfully participate in the synthesis of various five‐ and six‐membered N‐heterocycles through the cycloaddition reactions under metal‐catalyzed systems. Considering the unique and versatile functionality of this synthon, in this review, we have highlighted silver and copper‐catalyzed cycloadditions of isocyanide esters over the last decade.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.