Generating Immunological Memory Against Cancer by Camouflaging Gold‐Based Photothermal Nanoparticles in NIR‐II Biowindow for Mimicking T‐Cells

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-10-12 DOI:10.1002/smll.202407038
Xuefan Xiong, Ying Zhang, Xinqi Huang, Shusheng Zhang, Qiong Li
{"title":"Generating Immunological Memory Against Cancer by Camouflaging Gold‐Based Photothermal Nanoparticles in NIR‐II Biowindow for Mimicking T‐Cells","authors":"Xuefan Xiong, Ying Zhang, Xinqi Huang, Shusheng Zhang, Qiong Li","doi":"10.1002/smll.202407038","DOIUrl":null,"url":null,"abstract":"Photothermal therapy (PTT) against cancer not only directly ablates tumors but also induces tumor immunogenic cell death (ICD). However, the antitumor immune response elicited by ICD is insufficient to prevent relapse and metastasis because of the immunosuppressive tumor microenvironment (TME). A biomimetic nanoplatform (bmNP) mimicking cytotoxic lymphocytes (CTLs) for combinational photothermal‐immunotherapy to effectively regulate the immunosuppressive TME is reported here. The bmNP is constructed by wrapping the <jats:italic>T</jats:italic>‐cell membrane onto a new type of photothermal agents, spherical Au‐based PNCs (sAuPNCs). Similar to <jats:italic>T</jats:italic>‐cells, the bmNP enhanced accumulation at the tumor site by targeting the tumor via adhesion proteins on <jats:italic>T</jats:italic>‐cell membrane. The obtained sAuPNCs have a wide absorption band in the second near‐infrared (NIR‐II) region with a high photothermal conversion efficiency (PCE) up to about 75% and excellent photostability. The bmNP with a smaller size is more superior compete with <jats:italic>T</jats:italic>‐cells to bond with tumor cells via PD‐1/PD‐L1 interaction to effectively block the PD‐1 checkpoint of <jats:italic>T</jats:italic>‐cells for preventing <jats:italic>T</jats:italic>‐cell exhaustion. Furthermore, in vivo studies reveal the immunological memory effect is significantly elicited in mice received bmNPs therapy. Collectively, bmNPs show great potential in photothermal‐enhanced immunotherapy.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407038","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photothermal therapy (PTT) against cancer not only directly ablates tumors but also induces tumor immunogenic cell death (ICD). However, the antitumor immune response elicited by ICD is insufficient to prevent relapse and metastasis because of the immunosuppressive tumor microenvironment (TME). A biomimetic nanoplatform (bmNP) mimicking cytotoxic lymphocytes (CTLs) for combinational photothermal‐immunotherapy to effectively regulate the immunosuppressive TME is reported here. The bmNP is constructed by wrapping the T‐cell membrane onto a new type of photothermal agents, spherical Au‐based PNCs (sAuPNCs). Similar to T‐cells, the bmNP enhanced accumulation at the tumor site by targeting the tumor via adhesion proteins on T‐cell membrane. The obtained sAuPNCs have a wide absorption band in the second near‐infrared (NIR‐II) region with a high photothermal conversion efficiency (PCE) up to about 75% and excellent photostability. The bmNP with a smaller size is more superior compete with T‐cells to bond with tumor cells via PD‐1/PD‐L1 interaction to effectively block the PD‐1 checkpoint of T‐cells for preventing T‐cell exhaustion. Furthermore, in vivo studies reveal the immunological memory effect is significantly elicited in mice received bmNPs therapy. Collectively, bmNPs show great potential in photothermal‐enhanced immunotherapy.
通过在近红外-II 生物窗口中伪装金基光热纳米粒子以模拟 T 细胞,生成抗癌免疫记忆
针对癌症的光热疗法(PTT)不仅能直接消融肿瘤,还能诱导肿瘤免疫原性细胞死亡(ICD)。然而,由于肿瘤微环境(TME)具有免疫抑制作用,ICD 引发的抗肿瘤免疫反应不足以防止复发和转移。本文报告了一种模拟细胞毒性淋巴细胞(CTLs)的生物仿生纳米平台(bmNP),用于联合光热免疫疗法,以有效调节免疫抑制性肿瘤微环境。bmNP 是通过将 T 细胞膜包裹在一种新型光热制剂--球形金基 PNCs(sAuPNCs)上而构建的。与 T 细胞类似,bmNP 通过 T 细胞膜上的粘附蛋白靶向肿瘤,从而增强了在肿瘤部位的蓄积。所获得的sAuPNCs在第二近红外(NIR-II)区具有宽吸收带,光热转换效率(PCE)高达约75%,并且具有良好的光稳定性。尺寸较小的 bmNP 更能与 T 细胞竞争,通过 PD-1/PD-L1 相互作用与肿瘤细胞结合,从而有效阻断 T 细胞的 PD-1 检查点,防止 T 细胞衰竭。此外,体内研究显示,接受 bmNPs 治疗的小鼠可显著激发免疫记忆效应。总之,bmNPs 在光热增强免疫疗法中显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信