Consecutive Northward Super Typhoons Induced Extreme Ozone Pollution Events in Eastern China

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Jiahe Wang, Peng Wang, Chunfeng Tian, Meng Gao, Tiantao Cheng, Wei Mei
{"title":"Consecutive Northward Super Typhoons Induced Extreme Ozone Pollution Events in Eastern China","authors":"Jiahe Wang, Peng Wang, Chunfeng Tian, Meng Gao, Tiantao Cheng, Wei Mei","doi":"10.1038/s41612-024-00786-z","DOIUrl":null,"url":null,"abstract":"Typhoons are one of the most important weather systems that can cause severe ozone (O3) pollution in eastern China. While the effects of individual typhoons on O3 concentrations have been extensively studied, the effects of consecutive northward typhoons and the underlying mechanisms remain unclear, partly due to the complex processes involved. Here, Typhoons Maysak and Haishen, two consecutive northward typhoons in 2020, are selected to investigate their impact on the O3 pollution in eastern China. The results show that consecutive northward typhoons not only produced and maintained meteorological conditions conducive to O3 generation (e.g., elevated temperatures and intensified solar radiation), but also facilitated local accumulation and cross-regional transport of O3. These factors jointly led to a 30% increase in O3 concentration in eastern China with a prolonged period of O3 pollution. Our work underscores the significance of complex meteorological conditions in O3 pollution occurrences during extreme weather events, advancing our understanding of how consecutive northward typhoons affect air quality.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-9"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00786-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00786-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Typhoons are one of the most important weather systems that can cause severe ozone (O3) pollution in eastern China. While the effects of individual typhoons on O3 concentrations have been extensively studied, the effects of consecutive northward typhoons and the underlying mechanisms remain unclear, partly due to the complex processes involved. Here, Typhoons Maysak and Haishen, two consecutive northward typhoons in 2020, are selected to investigate their impact on the O3 pollution in eastern China. The results show that consecutive northward typhoons not only produced and maintained meteorological conditions conducive to O3 generation (e.g., elevated temperatures and intensified solar radiation), but also facilitated local accumulation and cross-regional transport of O3. These factors jointly led to a 30% increase in O3 concentration in eastern China with a prolonged period of O3 pollution. Our work underscores the significance of complex meteorological conditions in O3 pollution occurrences during extreme weather events, advancing our understanding of how consecutive northward typhoons affect air quality.

Abstract Image

Abstract Image

连续北上的超强台风诱发华东地区极端臭氧污染事件
台风是导致中国东部地区臭氧(O3)严重污染的最重要天气系统之一。虽然单个台风对臭氧浓度的影响已被广泛研究,但连续北上台风的影响及其内在机制仍不清楚,部分原因是其中涉及复杂的过程。本文选取 2020 年连续北上的两个台风 "麦莎 "和 "海神",研究其对华东地区臭氧污染的影响。结果表明,连续北上的台风不仅产生并维持了有利于O3生成的气象条件(如温度升高和太阳辐射增强),还促进了O3的本地累积和跨区域传输。在这些因素的共同作用下,华东地区的 O3 浓度增加了 30%,O3 污染时间延长。我们的研究强调了复杂气象条件在极端天气事件中造成 O3 污染的重要意义,加深了我们对连续北上台风如何影响空气质量的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信