Multi-step particle-based microfluidic test for biotin measurement

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Airiin Laaneväli, Indrek Saar, Naila Nasirova, Hanno Evard
{"title":"Multi-step particle-based microfluidic test for biotin measurement","authors":"Airiin Laaneväli,&nbsp;Indrek Saar,&nbsp;Naila Nasirova,&nbsp;Hanno Evard","doi":"10.1007/s10404-024-02766-4","DOIUrl":null,"url":null,"abstract":"<div><p>Microfluidics has emerged as a highly promising technology for miniaturizing chemical analysis laboratory into a single, small lab-on-a-chip device. In our previous research, we have developed an innovative approach to particle-based microfluidics by screen printing silica gel microparticles onto glass substrate to create a patterned porous material. In this article we demonstrate a multi-step sample analysis – combining conventional and affinity thin-layer chromatography with competitive assay for detection – along with blister reservoirs that can be integrated into the particle-based microfluidic point-of-care test. This integration achieves high analytical performance and makes the test simple to use. Biotin was chosen as the exemplary analyte, because measuring it is crucial in immunoassays, where high circulating biotin concentrations can lead to false results. This research also addresses the challenge of biotin interference in immunoassays by making it possible to produce rapid biotin tests. Need for these tests is particularly critical in emergency situations. Validation of the developed test demonstrated a dynamic range of 0.09 to 0.24 µg ml<sup>− 1</sup> and that artificial urine matrix does not have significant effect on the results. This would make it possible to assess whether the biotin interference occurs in urine sample immunoassays.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02766-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidics has emerged as a highly promising technology for miniaturizing chemical analysis laboratory into a single, small lab-on-a-chip device. In our previous research, we have developed an innovative approach to particle-based microfluidics by screen printing silica gel microparticles onto glass substrate to create a patterned porous material. In this article we demonstrate a multi-step sample analysis – combining conventional and affinity thin-layer chromatography with competitive assay for detection – along with blister reservoirs that can be integrated into the particle-based microfluidic point-of-care test. This integration achieves high analytical performance and makes the test simple to use. Biotin was chosen as the exemplary analyte, because measuring it is crucial in immunoassays, where high circulating biotin concentrations can lead to false results. This research also addresses the challenge of biotin interference in immunoassays by making it possible to produce rapid biotin tests. Need for these tests is particularly critical in emergency situations. Validation of the developed test demonstrated a dynamic range of 0.09 to 0.24 µg ml− 1 and that artificial urine matrix does not have significant effect on the results. This would make it possible to assess whether the biotin interference occurs in urine sample immunoassays.

Abstract Image

基于微粒的多步骤生物素测量微流控试验
微流体技术已成为一种极具前景的技术,可将化学分析实验室微型化,成为单一的小型芯片实验室设备。在之前的研究中,我们开发了一种基于微粒的微流体技术的创新方法,即在玻璃基底上丝网印刷硅胶微粒,以形成图案化的多孔材料。在这篇文章中,我们展示了一种多步骤样品分析方法--结合了传统的亲和薄层色谱法和竞争性检测法--以及可集成到基于微粒的微流控检测中的泡罩。这种集成实现了高分析性能,并使检测简单易用。之所以选择生物素作为示范分析物,是因为生物素的测量在免疫测定中至关重要,循环中生物素浓度过高会导致错误结果。这项研究还解决了生物素干扰免疫测定的难题,使生物素快速检测成为可能。在紧急情况下,对这些测试的需求尤为迫切。对所开发的检测方法进行的验证表明,其动态范围为 0.09 至 0.24 微克毫升-1,而且人工尿基质对检测结果没有明显影响。这样就可以评估尿样免疫测定中是否会出现生物素干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信