{"title":"Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering","authors":"Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao","doi":"10.1007/s40195-024-01718-9","DOIUrl":null,"url":null,"abstract":"<div><p>A refractory high entropy alloy Ti<sub>62</sub>Nb<sub>12</sub>Mo<sub>12</sub>Ta<sub>12</sub>W<sub>2</sub> was prepared by mechanical alloying and spark plasma sintering. The microstructure and mechanical properties of the Ti<sub>62</sub>Nb<sub>12</sub>Mo<sub>12</sub>Ta<sub>12</sub>W<sub>2</sub> alloy were analyzed. The experimental results show that the microstructure of the alloy is composed of two BCC phases, an FCC precipitated phase, and the precipitated phase which is a mixture of TiC, TiN and TiO. The alloy exhibits good room temperature compressive properties. The plasticity of the sample sintered at 1550 °C can reach 10.8%, and for the sample sintered at 1600 °C, the yield strength can be up to 2032 MPa, in the meantime the plasticity is 9.4%. The alloy also shows high strength at elevated temperature. The yield strength of the alloy exceeds 420 MPa at 900 °C, and value of which is still above 200 MPa when the test temperature reaches 1000 °C. Finally, the compressive yield strength model at room temperature is constructed. The prediction error of the model ranges from − 7.9% to − 12.4%, expressing fair performance.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01718-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A refractory high entropy alloy Ti62Nb12Mo12Ta12W2 was prepared by mechanical alloying and spark plasma sintering. The microstructure and mechanical properties of the Ti62Nb12Mo12Ta12W2 alloy were analyzed. The experimental results show that the microstructure of the alloy is composed of two BCC phases, an FCC precipitated phase, and the precipitated phase which is a mixture of TiC, TiN and TiO. The alloy exhibits good room temperature compressive properties. The plasticity of the sample sintered at 1550 °C can reach 10.8%, and for the sample sintered at 1600 °C, the yield strength can be up to 2032 MPa, in the meantime the plasticity is 9.4%. The alloy also shows high strength at elevated temperature. The yield strength of the alloy exceeds 420 MPa at 900 °C, and value of which is still above 200 MPa when the test temperature reaches 1000 °C. Finally, the compressive yield strength model at room temperature is constructed. The prediction error of the model ranges from − 7.9% to − 12.4%, expressing fair performance.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.