{"title":"A microfluidic platform for real-time enumeration and high accuracy retrieval of a very low number of cells","authors":"Buket Şahin, Begüm Şen Doğan, Ebru Özgür, Özge Zorlu, Ender Yıldırım, Haluk Külah","doi":"10.1007/s10404-024-02767-3","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, single cell isolation and analysis have become crucial, driven by the need to study rare cells in cell biology research, diagnostics, and personalized medicine. However, existing platforms for isolating small cell numbers are expensive, labor-intensive, and not widely accessible. To address this, we present a low-cost, repeatable microfluidic platform capable of retrieving 1-100 cells with high accuracy and minimal sample loss. The system utilizes a 2D hydrodynamic focusing chip and a pipette tip as a cell reservoir, enhanced by a flexible hydraulic reservoir (FHR) to prevent sample loss. Cells are collected using a syringe pump-driven flow, monitored in real-time under a microscope, and counted using image processing software. To validate the platform, MCF7 breast cancer cells were passed through the microchannel, with target retrieval numbers ranging from 1 to 100 cells. The average retrieved cell count was found to be 1.0 ± 0.0, 9.2 ± 2.4, 46.0 ± 5.9 and 98.5 ± 6.2 for 1, 10, 50, and 100 targeted number of cells, respectively. The counting accuracy of the code was demonstrated by the average deviation between the code count and retrieved number of cells being 0 ± 0.6, -0.3 ± 1.7, -1.6 ± 0.9, and 3.9 ± 4.8, respectively for 1, 10, 50, and 100 targeted cells. The process took less than 10 min, with cell counts matching targets closely and demonstrating high accuracy. Importantly, cell viability remained unaffected post-process. This method offers a cost-effective, robust solution for precise cell counting and retrieval, suitable for various downstream applications.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02767-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, single cell isolation and analysis have become crucial, driven by the need to study rare cells in cell biology research, diagnostics, and personalized medicine. However, existing platforms for isolating small cell numbers are expensive, labor-intensive, and not widely accessible. To address this, we present a low-cost, repeatable microfluidic platform capable of retrieving 1-100 cells with high accuracy and minimal sample loss. The system utilizes a 2D hydrodynamic focusing chip and a pipette tip as a cell reservoir, enhanced by a flexible hydraulic reservoir (FHR) to prevent sample loss. Cells are collected using a syringe pump-driven flow, monitored in real-time under a microscope, and counted using image processing software. To validate the platform, MCF7 breast cancer cells were passed through the microchannel, with target retrieval numbers ranging from 1 to 100 cells. The average retrieved cell count was found to be 1.0 ± 0.0, 9.2 ± 2.4, 46.0 ± 5.9 and 98.5 ± 6.2 for 1, 10, 50, and 100 targeted number of cells, respectively. The counting accuracy of the code was demonstrated by the average deviation between the code count and retrieved number of cells being 0 ± 0.6, -0.3 ± 1.7, -1.6 ± 0.9, and 3.9 ± 4.8, respectively for 1, 10, 50, and 100 targeted cells. The process took less than 10 min, with cell counts matching targets closely and demonstrating high accuracy. Importantly, cell viability remained unaffected post-process. This method offers a cost-effective, robust solution for precise cell counting and retrieval, suitable for various downstream applications.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).